Regulation of adrenocortical steroid hormone production by RhoA–diaphanous 1 signaling and the cytoskeleton

The production of glucocorticoids and aldosterone in the adrenal cortex is regulated at multiple levels. Biosynthesis of these hormones is initiated when cholesterol, the substrate, enters the inner mitochondrial membrane for conversion to pregnenolone. Unlike most metabolic pathways, the biosynthesis of adrenocortical steroid hormones is unique because some of the enzymes are localized in mitochondria and others in the endoplasmic reticulum (ER). Although much is known about the factors that control the transcription and activities of the proteins that are required for steroid hormone production, the parameters that govern the exchange of substrates between the ER and mitochondria are less well understood. This short review summarizes studies that have begun to provide insight into the role of the cytoskeleton, mitochondrial transport, and the physical interaction of the ER and mitochondria in the production of adrenocortical steroid hormones.

[1]  M. Sewer,et al.  RhoA and DIAPH1 mediate adrenocorticotropin-stimulated cortisol biosynthesis by regulating mitochondrial trafficking. , 2010, Endocrinology.

[2]  F. Cortese,et al.  Cytochalasin-stimulated steroidogenesis from high density lipoproteins , 1978, The Journal of cell biology.

[3]  J. Milbrandt,et al.  Mitofusin 2 Is Necessary for Transport of Axonal Mitochondria and Interacts with the Miro/Milton Complex , 2010, The Journal of Neuroscience.

[4]  V. Lingappa,et al.  Rapid regulation of steroidogenesis by mitochondrial protein import , 2002, Nature.

[5]  F. Beuschlein,et al.  Regulation of human MC2-R gene expression by CREB, CREM, and ICER in the adrenocortical cell line Y1. , 2007, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[6]  J. Shay,et al.  The effects of taxol, a microtubule‐stabilizing drug, on steroidogenic cells , 1985, Journal of cellular physiology.

[7]  J. Scheys,et al.  Contributions of specificity protein-1 and steroidogenic factor 1 to Adcy4 expression in Y1 mouse adrenal cells. , 2008, Endocrinology.

[8]  A. Gomez-Muñoz,et al.  Sphingosine‐1‐phosphate stimulates cortisol secretion , 2003, FEBS letters.

[9]  S. Narumiya,et al.  Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1 , 2000, Nature Cell Biology.

[10]  S. Gross Hither and yon: a review of bi-directional microtubule-based transport , 2004, Physical biology.

[11]  A. Hall,et al.  Cell migration: Rho GTPases lead the way. , 2004, Developmental biology.

[12]  W. Chazin,et al.  Structures of EF-hand Ca 2+-binding proteins: Diversity in the organization, packing and response to Ca 2+ Binding , 1998, Biometals.

[13]  J. Martinou,et al.  Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin , 2003, FEBS letters.

[14]  Alan Hall,et al.  Rho GTPases: biochemistry and biology. , 2005, Annual review of cell and developmental biology.

[15]  A. Wittinghofer,et al.  The regulation of mDia1 by autoinhibition and its release by Rho•GTP , 2005, The EMBO journal.

[16]  Peter Walter,et al.  Supporting Online Material for An ER-Mitochondria Tethering Complex Revealed by a Synthetic Biology Screen , 2009 .

[17]  N. Ridgway Oxysterol-binding proteins. , 2010, Sub-cellular biochemistry.

[18]  P. Hall,et al.  Attachment of steroidogenic lipid droplets to intermediate filaments in adrenal cells. , 1992, Journal of cell science.

[19]  M. Sewer,et al.  Regulation of Steroid Hormone Biosynthesis by the Cytoskeleton , 2008, Lipids.

[20]  J. Shay,et al.  The effect of cytochalasin D on steroid production and stress fiber organization in cultured bovine adrenocortical cells , 1984, Molecular and Cellular Endocrinology.

[21]  Arthur S. Alberts,et al.  Identification of a Carboxyl-terminal Diaphanous-related Formin Homology Protein Autoregulatory Domain* , 2001, The Journal of Biological Chemistry.

[22]  J. McCaffery,et al.  Structural Basis of Mitochondrial Tethering by Mitofusin Complexes , 2004, Science.

[23]  M. Sewer,et al.  Cyclic adenosine 5'-monophosphate-dependent sphingosine-1-phosphate biosynthesis induces human CYP17 gene transcription by activating cleavage of sterol regulatory element binding protein 1. , 2006, Endocrinology.

[24]  J. Soh,et al.  The involvement of specific PKC isoenzymes in phorbol ester-mediated regulation of steroidogenic acute regulatory protein expression and steroid synthesis in mouse Leydig cells. , 2011, Endocrinology.

[25]  Tullio Pozzan,et al.  Mitochondrial matrix calcium is an activating signal for hormone secretion. , 2011, Cell metabolism.

[26]  J. Friedman,et al.  The ER in 3D: a multifunctional dynamic membrane network. , 2011, Trends in cell biology.

[27]  P. Barrett,et al.  Minireview: aldosterone biosynthesis: electrically gated for our protection. , 2012, Endocrinology.

[28]  H. Kawasaki,et al.  Classification and evolution of EF-hand proteins , 1998, Biometals.

[29]  G. Fairn,et al.  Emerging roles of the oxysterol-binding protein family in metabolism, transport, and signaling , 2007, Cellular and Molecular Life Sciences.

[30]  B. Schimmer,et al.  The regulation of MAPKs in Y1 mouse adrenocortical tumor cells. , 2001, Endocrinology.

[31]  V. Olkkonen,et al.  Oxysterol binding proteins: in more than one place at one time? , 2004, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[32]  M. Weyand,et al.  Structural and mechanistic insights into the interaction between Rho and mammalian Dia , 2005, Nature.

[33]  L. Orci,et al.  Mitofusin-2 Independent Juxtaposition of Endoplasmic Reticulum and Mitochondria: An Ultrastructural Study , 2012, PloS one.

[34]  W. Miller,et al.  Minireview: regulation of steroidogenesis by electron transfer. , 2005, Endocrinology.

[35]  P. Hall,et al.  Roles of microfilaments and intermediate filaments in adrenal steroidogenesis , 1997, Microscopy research and technique.

[36]  V. Papadopoulos,et al.  Cholesterol transport in steroid biosynthesis: role of protein-protein interactions and implications in disease states. , 2009, Biochimica et biophysica acta.

[37]  B. J. Clark,et al.  Angiotensin II-dependent transcriptional activation of human steroidogenic acute regulatory protein gene by a 25-kDa cAMP-responsive element modulator protein isoform and Yin Yang 1. , 2012, Endocrinology.

[38]  K. Menon,et al.  Involvement of microtubules in lipoprotein degradation and utilization for steroidogenesis in cultured rat luteal cells. , 1985, Endocrinology.

[39]  A. Merrill,et al.  ACTH Regulates Steroidogenic Gene Expression and Cortisol Biosynthesis in the Human Adrenal Cortex via Sphingolipid Metabolism , 2004, Endocrine research.

[40]  A. Hall,et al.  Rho GTPases in cell biology , 2002, Nature.

[41]  F. Beuschlein,et al.  Aldosterone Producing Adrenal Adenomas are Characterized by Activation of Calcium/Calmodulin-dependent Protein Kinase (CaMK) Dependent Pathways , 2011, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[42]  W. Miller,et al.  Regulation of cytochrome b5 gene transcription by Sp3, GATA-6, and steroidogenic factor 1 in human adrenal NCI-H295A cells. , 2005, Molecular endocrinology.

[43]  F. Kraemer,et al.  Interaction of Hormone-sensitive Lipase with Steroidogeneic Acute Regulatory Protein , 2003, Journal of Biological Chemistry.

[44]  N. Ridgway,et al.  Oxysterol-binding-protein (OSBP)-related protein 4 binds 25-hydroxycholesterol and interacts with vimentin intermediate filaments. , 2002, The Biochemical journal.

[45]  Vladimir Gelfand,et al.  Coalignment of vimentin intermediate filaments with microtubules depends on kinesin , 1991, Nature.

[46]  A. Lewis,et al.  Molecular aspects of steroidogenic factor 1 (SF-1) , 2010, Molecular and Cellular Endocrinology.

[47]  D. A. Clayton,et al.  In situ localization of mitochondrial DNA replication in intact mammalian cells , 1996, The Journal of cell biology.

[48]  M. Sewer,et al.  Sphingosine-1-phosphate rapidly increases cortisol biosynthesis and the expression of genes involved in cholesterol uptake and transport in H295R adrenocortical cells , 2012, Molecular and Cellular Endocrinology.

[49]  D. Sackett,et al.  Cyclic AMP-independent stimulation of steroidogenesis in Y-1 adrenal tumor cells by antimitotic agents. , 1986, Biochimica et biophysica acta.

[50]  Nobutaka Hirokawa,et al.  Analysis of the kinesin superfamily: insights into structure and function. , 2005, Trends in cell biology.

[51]  K. Nakao,et al.  p140mDia, a mammalian homolog of Drosophila diaphanous,is a target protein for Rho small GTPase and is a ligand for profilin , 1997, The EMBO journal.

[52]  A. Ruusala,et al.  Atypical Rho GTPases Have Roles in Mitochondrial Homeostasis and Apoptosis* , 2003, The Journal of Biological Chemistry.

[53]  K. Verhey,et al.  Traffic control: regulation of kinesin motors , 2009, Nature Reviews Molecular Cell Biology.

[54]  Seungho Wang,et al.  Mechanism of colchicine‐induced steroidogenesis in rat adrenocortical cells , 2001, Journal of Cellular Biochemistry.

[55]  J. Martens,et al.  NF-1C, Sp1, and Sp3 are essential for transcription of the human gene for P450c17 (steroid 17alpha-hydroxylase/17,20 lyase) in human adrenal NCI-H295A cells. , 2001, Molecular endocrinology.

[56]  S. Azhar,et al.  Microvillar channels: a unique plasma membrane compartment for concentrating lipoproteins on the surface of rat adrenal cortical cells. , 1989, Journal of Lipid Research.

[57]  C. Gomez-Sanchez,et al.  Angiotensin II-mediated protein kinase D activation stimulates aldosterone and cortisol secretion in H295R human adrenocortical cells. , 2006, Endocrinology.

[58]  P. Hall,et al.  The role of intermediate filaments in adrenal steroidogenesis. , 1990, Journal of cell science.

[59]  G. Hajnóczky,et al.  Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase , 2008, Proceedings of the National Academy of Sciences.

[60]  A. Ruusala,et al.  The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. , 2006, Biochemical and biophysical research communications.

[61]  B. Schimmer,et al.  Adrenocortical cell lines , 2004, Molecular and Cellular Endocrinology.

[62]  J. Scott,et al.  Akap-lbc Anchors Protein Kinase a and Nucleates G␣ 12 -selective Rho-mediated Stress Fiber Formation* , 2022 .

[63]  Robert D. Goldman,et al.  Rapid Movements of Vimentin on Microtubule Tracks: Kinesin-dependent Assembly of Intermediate Filament Networks , 1998, The Journal of cell biology.

[64]  M. Okamoto,et al.  Salt-inducible kinase in steroidogenesis and adipogenesis , 2004, Trends in Endocrinology & Metabolism.

[65]  V. Gottifredi,et al.  Mitochondrial Fusion Is Essential for Steroid Biosynthesis , 2012, PloS one.

[66]  Y. Jo,et al.  Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. , 2005, Molecular endocrinology.

[67]  G. Hajnóczky,et al.  Control of mitochondrial motility and distribution by the calcium signal , 2004, The Journal of cell biology.

[68]  H. Higgs,et al.  The Mouse Formin mDia1 Is a Potent Actin Nucleation Factor Regulated by Autoinhibition , 2003, Current Biology.

[69]  C. Burns,et al.  Interdependence of steroidogenesis and shape changes in Y1 adrenocortical cells: studies with inhibitors of phosphoprotein phosphatases. , 2002, The Journal of endocrinology.

[70]  P. Hall,et al.  Calcium/calmodulin induces phosphorylation of vimentin and myosin light chain and cell rounding in cultured adrenal cells. , 1994, European journal of cell biology.

[71]  P. Hollenbeck,et al.  The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. , 1993, Journal of cell science.

[72]  W. Miller StAR search--what we know about how the steroidogenic acute regulatory protein mediates mitochondrial cholesterol import. , 2007, Molecular endocrinology.

[73]  M. Machius,et al.  Structural basis of Rho GTPase-mediated activation of the formin mDia1. , 2005, Molecular cell.

[74]  M. Bendayan,et al.  Immunocytochemical identification of cytoskeletal linkages to smooth muscle cell nuclei and mitochondria. , 1990, Cell motility and the cytoskeleton.

[75]  Minireview: steroidogenic factor 1: its roles in differentiation, development, and disease. , 2010, Molecular endocrinology.

[76]  T. Veenstra,et al.  Identification of a dynamic mitochondrial protein complex driving cholesterol import, trafficking, and metabolism to steroid hormones. , 2012, Molecular endocrinology.

[77]  John C Achermann,et al.  Role of DAX-1 (NR0B1) and steroidogenic factor-1 (NR5A1) in human adrenal function. , 2011, Endocrine development.

[78]  E. Dammer,et al.  Transcriptional Regulation of Adrenocortical Steroidogenic Gene Expression , 2007, Drug metabolism reviews.

[79]  M. Sewer,et al.  Multiple roles for sphingolipids in steroid hormone biosynthesis. , 2008, Sub-cellular biochemistry.

[80]  Takashi Suzuki,et al.  The orphan nuclear receptors NURR1 and NGFIB regulate adrenal aldosterone production. , 2004, Molecular endocrinology.

[81]  M. Charlton,et al.  The GTPase dMiro Is Required for Axonal Transport of Mitochondria to Drosophila Synapses , 2005, Neuron.

[82]  P. Hall The roles of calmodulin, actin, and vimentin in steroid synthesis by adrenal cells , 1997, Steroids.

[83]  W. Miller,et al.  GATA-4 and GATA-6 modulate tissue-specific transcription of the human gene for P450c17 by direct interaction with Sp1. , 2004, Molecular endocrinology.

[84]  T. Kapoor,et al.  Microtubule flux: drivers wanted. , 2007, Current opinion in cell biology.

[85]  P. Hollenbeck,et al.  Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons , 1995, The Journal of cell biology.

[86]  A. Hall,et al.  Rho GTPases and the control of cell behaviour. , 2005, Biochemical Society transactions.

[87]  N. Sakuragi,et al.  CREM confers cAMP responsiveness in human steroidogenic acute regulatory protein expression in NCI-H295R cells rather than SF-1/Ad4BP. , 2006, The Journal of endocrinology.

[88]  K. Nozaki,et al.  The Rho-mDia1 Pathway Regulates Cell Polarity and Focal Adhesion Turnover in Migrating Cells through Mobilizing Apc and c-Src , 2006, Molecular and Cellular Biology.

[89]  W. Miller,et al.  Steroidogenic Activity of StAR Requires Contact with Mitochondrial VDAC1 and Phosphate Carrier Protein , 2008, Journal of Biological Chemistry.

[90]  I. Summerhayes,et al.  Effect of microtubules and intermediate filaments on mitochondrial distribution. , 1983, Journal of cell science.

[91]  W. Miller,et al.  Pathways leading to phosphorylation of p450c17 and to the posttranslational regulation of androgen biosynthesis. , 2008, Endocrinology.

[92]  N. Hirokawa,et al.  Targeted Disruption of Mouse Conventional Kinesin Heavy Chain kif5B, Results in Abnormal Perinuclear Clustering of Mitochondria , 1998, Cell.

[93]  G. Voeltz,et al.  Endoplasmic reticulum–mitochondria contacts: function of the junction , 2012, Nature Reviews Molecular Cell Biology.

[94]  Takashi Suzuki,et al.  The orphan nuclear receptor NGFIB regulates transcription of 3beta-hydroxysteroid dehydrogenase. implications for the control of adrenal functional zonation. , 2004, The Journal of biological chemistry.

[95]  W. Miller,et al.  The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. , 2011, Endocrine reviews.

[96]  M. Connelly SR-BI-mediated HDL cholesteryl ester delivery in the adrenal gland , 2009, Molecular and Cellular Endocrinology.

[97]  Yasuhiro Nakamura,et al.  Regulation of the adrenal androgen biosynthesis , 2008, The Journal of Steroid Biochemistry and Molecular Biology.

[98]  E. Ikonen,et al.  The OSBP-related protein family in humans. , 2001, Journal of lipid research.

[99]  P. Hollenbeck,et al.  Nerve Growth Factor Signaling Regulates Motility and Docking of Axonal Mitochondria , 2004, Current Biology.

[100]  H. Higgs,et al.  Dissecting Requirements for Auto-inhibition of Actin Nucleation by the Formin, mDia1* , 2005, Journal of Biological Chemistry.

[101]  M. Schuldiner,et al.  Staying in touch: the molecular era of organelle contact sites. , 2011, Trends in biochemical sciences.

[102]  M. Connelly,et al.  SR‐BI and HDL Cholesteryl Ester Metabolism , 2004, Endocrine research.

[103]  David N. Mastronarde,et al.  ER sliding dynamics and ER–mitochondrial contacts occur on acetylated microtubules , 2010, The Journal of cell biology.

[104]  V. Papadopoulos,et al.  Protein-Protein Interactions Mediate Mitochondrial Cholesterol Transport and Steroid Biosynthesis* , 2006, Journal of Biological Chemistry.

[105]  H. Randeva,et al.  Adiponectin (15-36) stimulates steroidogenic acute regulatory (StAR) protein expression and cortisol production in human adrenocortical cells: role of AMPK and MAPK kinase pathways. , 2011, Biochimica et biophysica acta.

[106]  J. Wong,et al.  SR-BI is required for microvillar channel formation and the localization of HDL particles to the surface of adrenocortical cells in vivo. , 2002, Journal of lipid research.

[107]  A. Gomez-Muñoz,et al.  Sphingosine-1-phosphate stimulates aldosterone secretion through a mechanism involving the PI3K/PKB and MEK/ERK 1/2 pathways Published, JLR Papers in Press, July 3, 2007. , 2007, Journal of Lipid Research.

[108]  P. Walter,et al.  The conserved GTPase Gem1 regulates endoplasmic reticulum–mitochondria connections , 2011, Proceedings of the National Academy of Sciences.

[109]  S. Singer,et al.  Mitochondria are associated with microtubules and not with intermediate filaments in cultured fibroblasts. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[110]  W. Prinz,et al.  A role for oxysterol-binding protein–related protein 5 in endosomal cholesterol trafficking , 2011, The Journal of cell biology.

[111]  A. Gomez-Muñoz,et al.  Sphingosine 1-phosphate: a novel stimulator of aldosterone secretion Published, JLR Papers in Press, March 22, 2006. , 2006, Journal of Lipid Research.

[112]  J. Eriksson,et al.  Vimentin is a functional partner of hormone sensitive lipase and facilitates lipolysis. , 2010, Journal of proteome research.

[113]  F. Kraemer,et al.  Ablation of vimentin results in defective steroidogenesis. , 2012, Endocrinology.

[114]  W. Rainey,et al.  GATA-6 is expressed in the human adrenal and regulates transcription of genes required for adrenal androgen biosynthesis. , 2003, Endocrinology.

[115]  Takashi Suzuki,et al.  Transcription factor GATA-6 in the human adrenocortex: association with adrenal development and aging. , 2007, Endocrine journal.

[116]  N. Ridgway,et al.  Novel Members of the Human Oxysterol-binding Protein Family Bind Phospholipids and Regulate Vesicle Transport* , 2001, The Journal of Biological Chemistry.

[117]  A. Santel,et al.  Control of mitochondrial morphology by a human mitofusin. , 2001, Journal of cell science.

[118]  S. Emr,et al.  Osh Proteins Regulate Phosphoinositide Metabolism at ER-Plasma Membrane Contact Sites , 2011, Cell.

[119]  Takayuki Kato,et al.  Cooperation between mDia1 and ROCK in Rho-induced actin reorganization , 1999, Nature Cell Biology.

[120]  Y. Li,et al.  Regulation of mitochondria distribution by RhoA and formins , 2006, Journal of Cell Science.

[121]  X. Xie,et al.  Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-stokes Raman scattering microscopy. , 2006, Biophysical journal.

[122]  L. Scorrano,et al.  Mitofusin 2 tethers endoplasmic reticulum to mitochondria , 2008, Nature.