Limited memory solution of bound constrained convex quadratic problems arising in video games

We describe the solution of a bound constrained convex quadratic problem with limited memory resources. The problem arises from physical simulations occurring within video games. The motivating problem is outlined, along with a simple interior point approach for its solution. Various linear algebra issues arising in the implementation are explored, including preconditioning, ordering and a number of ways of solving an equivalent augmented system. Alternative approaches are briefly surveyed, and some recommendations for solving these types of problems are given.

[1]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[2]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[3]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[4]  Francisco Facchinei,et al.  The Semismooth Algorithm for Large Scale Complementarity Problems , 2001, INFORMS J. Comput..

[5]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[6]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[7]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[8]  Jorge Nocedal,et al.  Automatic Preconditioning by Limited Memory Quasi-Newton Updating , 1999, SIAM J. Optim..

[9]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[10]  José Mario Martínez,et al.  Nonmonotone Spectral Projected Gradient Methods on Convex Sets , 1999, SIAM J. Optim..

[11]  Luca Bergamaschi,et al.  Preconditioning Indefinite Systems in Interior Point Methods for Optimization , 2004, Comput. Optim. Appl..

[12]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[13]  John R. Gilbert,et al.  Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..

[14]  Stephen J. Wright,et al.  Object-oriented software for quadratic programming , 2003, TOMS.

[15]  Nicholas I. M. Gould,et al.  GALAHAD, a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization , 2003, TOMS.

[16]  Armand,et al.  A limited memory algorithm for inequality constrained minimization , 2003 .

[17]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[18]  Michael C. Ferris,et al.  Complementarity and variational problems : state of the art , 1997 .

[19]  Galahad , 1906 .

[20]  S. Dirkse,et al.  The path solver: a nommonotone stabilization scheme for mixed complementarity problems , 1995 .

[21]  Chih-Jen Lin,et al.  Incomplete Cholesky Factorizations with Limited Memory , 1999, SIAM J. Sci. Comput..

[22]  Chih-Jen Lin,et al.  Newton's Method for Large Bound-Constrained Optimization Problems , 1999, SIAM J. Optim..

[23]  José Mario Martínez,et al.  Algorithm 813: SPG—Software for Convex-Constrained Optimization , 2001, TOMS.

[24]  M. Ferris,et al.  Complementarity problems in GAMS and the PATH solver 1 This material is based on research supported , 2000 .

[25]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[26]  M. C. FERRISzAbstract,et al.  Crash Techniques for Large-scale Complementarity Problems , 2007 .