Image Segmentation Using Active Contours: Calculus of Variations or Shape Gradients?

We consider the problem of segmenting an image through the minimization of an energy criterion involving region and boundary functionals. We show that one can go from one class to the otherby solving Poisson's orHelmholtz's equation with well-chosen boundar y conditions. Using this equivalence, we study the case of a large class of region functionals by standard methods of the calculus of variations and derive the corresponding Euler-Lagrange equations. We revisit this problem using the notion of a shape derivative and show that the same equations can be elegantly derived without going through the unnatural step of converting the region integrals into boundary integrals. We also define a larger class of region functionals based on the estimation and comparison to a prototype of the probability density distribution of image features and show how the shape derivative tool allows us to easily compute the corresponding Gateaux derivatives and Euler-Lagrange equations. Finally we apply this new functional to the problem of regions segmentation in sequences of color images. We briefly describe our numerical scheme and show some experimental results.

[1]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[2]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[3]  D CohenLaurent On active contour models and balloons , 1991 .

[4]  Olivier D. Faugeras,et al.  Reconciling Distance Functions and Level Sets , 1999, Scale-Space.

[5]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[6]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[7]  Hwann-Tzong Chen,et al.  Trust-region methods for real-time tracking , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[8]  Michel Barlaud,et al.  Region-based active contours for video object segmentation with camera compensation , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[9]  Rachid Deriche,et al.  Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach , 2000, ECCV.

[10]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[11]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[12]  Josiane Zerubia,et al.  A Level Set Model for Image Classification , 1999, Scale-Space.

[13]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[14]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[15]  Rémi Ronfard,et al.  Region-based strategies for active contour models , 1994, International Journal of Computer Vision.

[16]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  P. Olver,et al.  Conformal curvature flows: From phase transitions to active vision , 1996, ICCV 1995.

[18]  Tony F. Chan,et al.  An Active Contour Model without Edges , 1999, Scale-Space.

[19]  Gilles Aubert,et al.  Signed distance functions and viscosity solutions of discontinuous Hamilton-Jacobi Equations , 2002 .

[20]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[21]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[22]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[23]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[24]  James S. Duncan,et al.  Deformable boundary finding in medical images by integrating gradient and region information , 1996, IEEE Trans. Medical Imaging.

[25]  Eric Debreuve Segmentation par contours actifs en imagerie médicale dynamique : application en cardiologie nucléaire , 2000 .

[26]  Joachim Weickert E � cient and Reliable Schemes for Nonlinear Di usion Filtering , 2005 .

[27]  Johan Montagnat,et al.  Topology and Shape Constraints on Parametric Active Contours , 1999 .

[28]  Christophe Chesnaud,et al.  Statistical Region Snake-Based Segmentation Adapted to Different Physical Noise Models , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Joachim Weickert,et al.  Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.

[30]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[31]  Christoph Schnörr,et al.  Computation of discontinuous optical flow by domain decomposition and shape optimization , 1992, International Journal of Computer Vision.

[32]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[33]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[34]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[35]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[36]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[37]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[38]  M. Delfour,et al.  Shapes and Geometries: Analysis, Differential Calculus, and Optimization , 1987 .

[39]  Stanley Osher,et al.  Level Set Methods , 2003 .

[40]  Johan Montagnat,et al.  A review of deformable surfaces: topology, geometry and deformation , 2001, Image Vis. Comput..

[41]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[42]  Laurent D. Cohen,et al.  Surface reconstruction using active contour models , 1993 .

[43]  Michel Barlaud,et al.  A 3-Step Algorithm Using Region-Based Active Contours for Video Objects Detection , 2002, EURASIP J. Adv. Signal Process..

[44]  G. Aubert,et al.  Video object segmentation using Eulerian region-based active contours , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[45]  Michel Barlaud,et al.  DREAM2S: Deformable Regions Driven by an Eulerian Accurate Minimization Method for Image and Video Segmentation , 2002, International Journal of Computer Vision.

[46]  Michel Barlaud,et al.  Space-time segmentation using level set active contours applied to myocardial gated SPECT , 2001, IEEE Transactions on Medical Imaging.

[47]  Anthony J. Yezzi,et al.  A statistical approach to snakes for bimodal and trimodal imagery , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[48]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[49]  Rachid Deriche,et al.  Geodesic Active Regions for Motion Estimation and Tracking , 1999, ICCV.