GPU‐based acceleration of computational electromagnetics codes

SUMMARY The solution of large and complex electromagnetic (EM) problems often leads to a substantial demand for high-performance computing resources and strategies. This is true for a wide variety of numerical methods and applications, ranging from EM compatibility to radio-coverage, circuit modeling, and optimization of components. In the last decades, graphics processing units (GPUs) have gained popularity in scientific computing as a low-cost and powerful parallel architecture. This paper gives an overview of the main efforts of researchers to port computational electromagnetics (CEM) codes to GPU. Moreover, GPU implementation aspects of two well-known techniques, namely the finite-difference time domain (FDTD) and the method of moments (MoM), are investigated. The impressive speed-ups achieved (up to 60× and 25× for FDTD and MoM, respectively) demonstrate the effectiveness of GPUs in accelerating CEM codes. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  S. Adams,et al.  Finite Difference Time Domain (FDTD) Simulations Using Graphics Processors , 2007, 2007 DoD High Performance Computing Modernization Program Users Group Conference.

[2]  Tapan K. Sarkar,et al.  PARALLEL MOM-PO METHOD WITH OUT-OF-CORE TECHNIQUE FOR ANALYSIS OF COMPLEX ARRAYS ON ELECTRICALLY LARGE PLATFORMS , 2010 .

[3]  M. Okoniewski,et al.  Acceleration of large-scale FDTD simulations on high performance GPU clusters , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[4]  M. Mongiardo,et al.  An impedance matrix transformation for planar circuit integral equation solvers , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[5]  Markus Clemens,et al.  Scalability of Higher-Order Discontinuous Galerkin FEM Computations for Solving Electromagnetic Wave Propagation Problems on GPU Clusters , 2010, IEEE Transactions on Magnetics.

[6]  L. Tarricone,et al.  Human exposure to the near field of radiobase antennas - a full-wave solution using parallel FDTD , 2003 .

[7]  Danilo De Donno,et al.  Iterative Solution of Linear Systems in Electromagnetics (And Not Only): Experiences with CUDA , 2010, Euro-Par Workshops.

[8]  M. Okoniewski,et al.  Speed It Up , 2010, IEEE Microwave Magazine.

[9]  M. I. Aksun,et al.  Choices of expansion and testing functions for the method of moments applied to a class of electromagnetic problems , 1993 .

[10]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[11]  Danilo De Donno,et al.  Parallel efficient method of moments exploiting graphics processing units , 2010 .

[12]  Z. Nie,et al.  Acceleration of the Method of Moments Calculations by Using Graphics Processing Units , 2008, IEEE Transactions on Antennas and Propagation.

[13]  T Topa,et al.  Using GPU With CUDA to Accelerate MoM-Based Electromagnetic Simulation of Wire-Grid Models , 2011, IEEE Antennas and Wireless Propagation Letters.

[14]  Tyler Killian,et al.  Acceleration of TM cylinder EFIE with CUDA , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[15]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[16]  Sven Simon,et al.  Accelerating Simulations of Light Scattering Based on Finite-Difference Time-Domain Method with General Purpose GPUs , 2008, 2008 11th IEEE International Conference on Computational Science and Engineering.

[17]  T.P. Stefanski,et al.  Acceleration of the 3D ADI-FDTD method using graphics processor units , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[18]  Kamal H. Awadalla,et al.  ELECTROMAGNETIC SCATTERING USING GPU-BASED FINITE DIFFERENCE FREQUENCY DOMAIN METHOD , 2009 .

[19]  Luciano Tarricone,et al.  A quasi-one-dimensional integration technique for the analysis of planar microstrip circuits via MPIE/MoM , 2001 .

[20]  Raj Mittra,et al.  Derivation of closed-form Green's functions for a general microstrip geometry , 1992 .

[21]  Yuta Inoue,et al.  GPGPU-FDTD method for 2-dimensional electromagnetic field simulation and its estimation , 2009, 2009 IEEE 18th Conference on Electrical Performance of Electronic Packaging and Systems.

[22]  William J. Dally,et al.  The GPU Computing Era , 2010, IEEE Micro.

[23]  Michael Garland,et al.  Efficient Sparse Matrix-Vector Multiplication on CUDA , 2008 .

[24]  M.J. Inman,et al.  FDTD calculations using graphical processing units , 2005, IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005..

[25]  Jie Zhang,et al.  A GPU approach to FDTD for radio coverage prediction , 2008, 2008 11th IEEE Singapore International Conference on Communication Systems.

[26]  Atef Z. Elsherbeni,et al.  Compute unified device architecture (CUDA) based finite-difference time-domain (FDTD) implementation , 2010 .

[27]  M.M. Okoniewski,et al.  Acceleration of finite-difference time-domain (FDTD) using graphics processor units (GPU) , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[28]  Jean-Pierre Bérenger,et al.  On the Huygens absorbing boundary conditions for electromagnetics , 2007, J. Comput. Phys..

[29]  Mark J. Harris,et al.  Parallel Prefix Sum (Scan) with CUDA , 2011 .

[30]  M. Mongiardo,et al.  Efficient phenomenologically-based 1-D evaluation of the impedance matrix in a MPIE analysis of planar microstrip circuits , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[31]  Danilo De Donno,et al.  Introduction to GPU Computing and CUDA Programming: A Case Study on FDTD [EM Programmer's Notebook] , 2010 .

[32]  Kan Xu,et al.  Multilevel fast multipole algorithm enhanced by GPU parallel technique for electromagnetic scattering problems , 2010 .

[33]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[34]  Stefan Bilbao,et al.  Virtual Room Acoustics: A Comparison of Techniques for Computing 3D-FDTD Schemes Using CUDA , 2011 .

[35]  Filippo Rossi,et al.  Hardware accelerated symmetric condensed node TLM procedure for NVIDIA graphics processing units , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[36]  Tomasz Topa,et al.  Adapting MoM With RWG Basis Functions to GPU Technology Using CUDA , 2011, IEEE Antennas and Wireless Propagation Letters.

[37]  M. Mrozowski,et al.  How to Render FDTD Computations More Effective Using a Graphics Accelerator , 2009, IEEE Transactions on Magnetics.

[38]  Attila Kakay,et al.  Speedup of FEM Micromagnetic Simulations With Graphical Processing Units , 2010, IEEE Transactions on Magnetics.

[39]  Luciano Tarricone,et al.  GPU-based acceleration of MPIE/MoM matrix calculation for the analysis of microstrip circuits , 2011, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP).

[40]  E Lezar,et al.  GPU-Accelerated Method of Moments by Example: Monostatic Scattering , 2010, IEEE Antennas and Propagation Magazine.