Engineering Lipid Bilayer Membranes for Protein Studies

Lipid membranes regulate the flow of nutrients and communication signaling between cells and protect the sub-cellular structures. Recent attempts to fabricate artificial systems using nanostructures that mimic the physiological properties of natural lipid bilayer membranes (LBM) fused with transmembrane proteins have helped demonstrate the importance of temperature, pH, ionic strength, adsorption behavior, conformational reorientation and surface density in cellular membranes which all affect the incorporation of proteins on solid surfaces. Much of this work is performed on artificial templates made of polymer sponges or porous materials based on alumina, mica, and porous silicon (PSi) surfaces. For example, porous silicon materials have high biocompatibility, biodegradability, and photoluminescence, which allow them to be used both as a support structure for lipid bilayers or a template to measure the electrochemical functionality of living cells grown over the surface as in vivo. The variety of these media, coupled with the complex physiological conditions present in living systems, warrant a summary and prospectus detailing which artificial systems provide the most promise for different biological conditions. This study summarizes the use of electrochemical impedance spectroscopy (EIS) data on artificial biological membranes that are closely matched with previously published biological systems using both black lipid membrane and patch clamp techniques.

[1]  A. Nikolov,et al.  Ordered Micelle Structuring in Thin Films Formed from Anionic Surfactant Solutions , 1989 .

[2]  J. Chapel,et al.  Dissimilar pH-dependent adsorption features of bovine serum albumin and alpha-chymotrypsin on mica probed by AFM. , 2009, Colloids and surfaces. B, Biointerfaces.

[3]  D. Zakim,et al.  Reconstitution of membrane proteins. Spontaneous incorporation of integral membrane proteins into preformed bilayers of pure phospholipid. , 1988, The Journal of biological chemistry.

[4]  C. Dupont-Gillain,et al.  Use of AFM to probe the adsorption strength and time-dependent changes of albumin on self-assembled monolayers. , 2003, Journal of biomedical materials research. Part A.

[5]  Seung-Yong Jung,et al.  Creating fluid and air-stable solid supported lipid bilayers. , 2004, Journal of the American Chemical Society.

[6]  H. Mcconnell,et al.  Theory of protein-lipid and protein-protein interactions in bilayer membranes. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Fernando Albertorio,et al.  Fluid and air-stable lipopolymer membranes for biosensor applications. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[8]  Claudia Steinem,et al.  Impedance analysis and single-channel recordings on nano-black lipid membranes based on porous alumina. , 2004, Biophysical journal.

[9]  K. Mihara,et al.  New insights into the function and regulation of mitochondrial fission. , 2013, Biochimica et biophysica acta.

[10]  Dumas,et al.  Understanding the function of bacterial outer membrane channels by reconstitution into black lipid membranes , 2000, Biophysical chemistry.

[11]  J. East Membrane structural biology with biochemical and biophysical foundations , 2008 .

[12]  A. Peña,et al.  Incorporation of ionic channels from yeast plasma membranes into black lipid membranes. , 1989, Biophysical journal.

[13]  Paul S. Cremer,et al.  Formation and Spreading of Lipid Bilayers on Planar Glass Supports , 1999 .

[14]  H. Tien Black lipid membranes: thickness determination and molecular organization by optical methods. , 1967, Journal of theoretical biology.

[15]  A. Plant,et al.  Hybrid bilayer membranes in air and water: infrared spectroscopy and neutron reflectivity studies. , 1998, Biophysical journal.

[16]  N. Thompson,et al.  Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion. , 2001, Biophysical journal.

[17]  G. Veglia,et al.  Fluidic and air-stable supported lipid bilayer and cell-mimicking microarrays. , 2008, Journal of the American Chemical Society.

[18]  C. Vieu,et al.  Porous silicon membrane, with an integrated aqueous supply, for two chamber AFM , 2009 .

[19]  L. Chernomordik,et al.  The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. , 1987, Biochimica et biophysica acta.

[20]  N. He,et al.  Single Lipid Bilayers Constructed on Polymer Cushion Studied by Sum Frequency Generation Vibrational Spectroscopy. , 2011, The journal of physical chemistry. C, Nanomaterials and interfaces.

[21]  Z. Tang,et al.  Bioapplication of nanosemiconductors , 2005 .

[22]  Monica Simion,et al.  Porous silicon used as support for protein microarray , 2009 .

[23]  S. Seeger,et al.  A comprehensive study of concepts and phenomena of the nonspecific adsorption of beta-lactoglobulin. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  D. Petri,et al.  Adsorption behavior and activity of hexokinase. , 2006, Journal of colloid and interface science.

[25]  Rafael Mulero,et al.  Nanopore-Based Devices for Bioanalytical Applications , 2010 .

[26]  P. Nollert,et al.  Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces. , 1995, Biophysical journal.

[27]  L. Tamm,et al.  Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. , 1992, Biochimica et biophysica acta.

[28]  Helmut Ringsdorf,et al.  INCORPORATION OF MEMBRANE-PROTEINS IN SOLID-SUPPORTED LIPID LAYERS , 1995 .

[29]  P. Schaaf,et al.  Polyelectrolyte multilayer coatings that resist protein adsorption at rest and under stretching , 2008 .

[30]  Khalid Hasan Tantawi,et al.  Porous silicon membrane for investigation of transmembrane proteins , 2013 .

[31]  M. L. Wagner,et al.  Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. , 2000, Biophysical journal.

[32]  A. Herrmann,et al.  Rapid transbilayer movement of spin-labeled steroids in human erythrocytes and in liposomes. , 2002, Biophysical journal.

[33]  J. Andrade,et al.  Plasma Protein Adsorption: The Big Twelve a , 1987, Annals of the New York Academy of Sciences.

[34]  P. Stroeve,et al.  Supported lipid bilayers lifted from the substrate by layer-by-layer polyion cushions on self-assembled monolayers , 2003 .

[35]  M Montal,et al.  Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[36]  George M Whitesides,et al.  Microfabricated teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. , 2003, Biophysical journal.

[37]  Fernanda F. Rossetti,et al.  Interactions between titanium dioxide and phosphatidyl serine-containing liposomes: formation and patterning of supported phospholipid bilayers on the surface of a medically relevant material. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[38]  M. Ballauff,et al.  Interaction of proteins with linear polyelectrolytes and spherical polyelectrolyte brushes in aqueous solution. , 2006, Physical chemistry chemical physics : PCCP.

[39]  F. Leermakers,et al.  On the mechanism of uptake of globular proteins by polyelectrolyte brushes: a two-gradient self-consistent field analysis. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[40]  G. Findenegg,et al.  Structure, Stability, and Activity of Adsorbed Enzymes , 1997, Journal of colloid and interface science.

[41]  J. Israelachvili,et al.  Polymer-cushioned bilayers. II. An investigation of interaction forces and fusion using the surface forces apparatus. , 1999, Biophysical journal.

[42]  T. Tjärnhage,et al.  From liposomes to supported, planar bilayer structures on hydrophilic and hydrophobic surfaces: an atomic force microscopy study. , 2000, Biophysical journal.

[43]  Paul S. Cremer,et al.  Solid supported lipid bilayers: From biophysical studies to sensor design , 2006, Surface Science Reports.

[44]  W. Knoll,et al.  Hydrogel-supported protein-tethered bilayer lipid membranes: a new approach toward polymer-supported lipid membranes , 2011 .

[45]  Mikael Käll,et al.  Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. , 2005, Journal of the American Chemical Society.

[46]  W. Norde,et al.  BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. , 2000, Journal of biotechnology.

[47]  D. Mitov,et al.  Bending elasticities of model membranes: influences of temperature and sterol content. , 1997, Biophysical journal.

[48]  D. Benos,et al.  Epithelial sodium channel in planar lipid bilayers. , 2006, Methods in molecular biology.

[49]  T. Matsuda,et al.  Measurement of the Interaction Forces between Proteins and Iniferter-Based Graft-Polymerized Surfaces with an Atomic Force Microscope in Aqueous Media , 2001 .

[50]  Arthur Weiss,et al.  Switching Signals On or Off by Receptor Dimerization , 1998, Cell.

[51]  P. Steponkus,et al.  Phase diagram of 1,2-dioleoylphosphatidylethanolamine (DOPE):water system at subzero temperatures and at low water contents. , 1999, Biochimica et biophysica acta.

[52]  C. Steinem,et al.  Membrane-suspended nanocompartments based on ordered pores in alumina. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[53]  Nicolas H Voelcker,et al.  Biosensing using lipid bilayers suspended on porous silicon. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[54]  W. Webb,et al.  Clustering, mobility, and triggering activity of small oligomers of immunoglobulin E on rat basophilic leukemia cells , 1986, The Journal of cell biology.

[55]  S. Singer,et al.  The fluid mosaic model of the structure of cell membranes. , 1972, Science.

[56]  J. Dunlop,et al.  Bilayer lipid membranes supported on Teflon filters: a functional environment for ion channels. , 2011, Biosensors & bioelectronics.

[57]  Erich Sackmann,et al.  High Electric Resistance Polymer/Lipid Composite Films on Indium−Tin−Oxide Electrodes , 1999 .

[58]  M. Awayda Specific and Nonspecific Effects of Protein Kinase C on the Epithelial Na + Channel , 2000, The Journal of general physiology.

[59]  V. Hlady,et al.  Methods for studying protein adsorption. , 1999, Methods in enzymology.

[60]  Erich Sackmann,et al.  Polymer-supported membranes as models of the cell surface , 2005, Nature.

[61]  J. Op den Kamp Lipid asymmetry in membranes. , 1979, Annual review of biochemistry.

[62]  J. Heath,et al.  Black Lipid Membranes: Visualizing the Structure, Dynamics, and Substrate Dependence of Membranes , 2004 .

[63]  Georges Belfort,et al.  Stability of tethered proteins. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[64]  G. Wiederschain The structure of biological membranes , 2006, Biochemistry (Moscow).

[65]  Darayas N. Patel,et al.  Investigation of transmembrane protein fused in lipid bilayer membranes supported on porous silicon , 2013, Journal of medical engineering & technology.

[66]  C. Dobson,et al.  Chemical biology: More charges against aggregation , 2007, Nature.

[67]  H. Mcconnell,et al.  Theoretical study of protein--lipid interactions in bilayer membranes. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Z. Cui,et al.  The Effect of Solution pH on the Structure of Lysozyme Layers Adsorbed at the Silica−Water Interface Studied by Neutron Reflection , 1998 .

[69]  R. Tilton,et al.  Aggregation of lysozyme and of poly(ethylene glycol)-modified lysozyme after adsorption to silica. , 2007, Colloids and surfaces. B, Biointerfaces.

[70]  D. O. Rudin,et al.  Reconstitution of Excitable Cell Membrane Structure in Vitro , 1962 .

[71]  K. Furusawa,et al.  Liposome Adhesion on Mica Surface Studied by Atomic Force Microscopy , 1999 .

[72]  Raúl J. Martín-Palma,et al.  Biomedical applications of nanostructured porous silicon: a review , 2010 .

[73]  A. Minton,et al.  Effects of excluded surface area and adsorbate clustering on surface adsorption of proteins. II. Kinetic models. , 2001, Biophysical journal.

[74]  Ingo Köper,et al.  Tethered lipid Bilayers on ultraflat gold surfaces , 2003 .

[75]  G. Voth,et al.  Understanding the role of amphipathic helices in N-BAR domain driven membrane remodeling. , 2013, Biophysical journal.

[76]  W. Knoll,et al.  Polyelectrolyte-supported lipid membranes. , 2002, Bioelectrochemistry.

[77]  W. Freeman,et al.  Porous silicon in drug delivery devices and materials. , 2008, Advanced drug delivery reviews.

[78]  High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Vicente Torres-Costa,et al.  Optical Biosensors Based on Semiconductor Nanostructures , 2009, Sensors.

[80]  H. Vogel,et al.  Investigating the Function of Ion Channels in Tethered Lipid Membranes by Impedance Spectroscopy , 2005 .

[81]  Rob Phillips,et al.  Membrane-protein interactions in mechanosensitive channels. , 2004, Biophysical journal.

[82]  J. Ramsden,et al.  Complex desorption of mucin from silica. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[83]  P. Mazeran,et al.  Two-Step Formation of Streptavidin-Supported Lipid Bilayers by PEG-Triggered Vesicle Fusion. Fluorescence and Atomic Force Microscopy Characterization† , 2003 .

[84]  A. Charrier,et al.  Main phase transitions in supported lipid single-bilayer. , 2005, Biophysical journal.

[85]  O. Otto,et al.  Simple reconstitution of protein pores in nano lipid bilayers. , 2011, Nano letters.

[86]  F. Jähnig Critical effects from lipid-protein interaction in membranes. I. Theoretical description. , 1981, Biophysical journal.

[87]  E. Gratton,et al.  Salt-induced protein resistance of polyelectrolyte brushes studied using fluorescence correlation spectroscopy and neutron reflectometry , 2004 .

[88]  E. Dufourc Sterols and membrane dynamics , 2008, Journal of chemical biology.

[89]  Claudia Steinem,et al.  Pore-Suspending Lipid Bilayers on Porous Alumina Investigated by Electrical Impedance Spectroscopy , 2003 .

[90]  Hjalmar Brismar,et al.  Adsorption and activity of Thermomyces lanuginosus lipase on hydrophobic and hydrophilic surfaces measured with dual polarization interferometry (DPI) and confocal microscopy. , 2008, Colloids and surfaces. B, Biointerfaces.

[91]  Stefan Seeger,et al.  Understanding protein adsorption phenomena at solid surfaces. , 2011, Advances in colloid and interface science.

[92]  Horst Vogel,et al.  HIGHLY ELECTRICALLY INSULATING TETHERED LIPID BILAYERS FOR PROBING THE FUNCTION OF ION CHANNEL PROTEINS , 2003 .

[93]  M. Santore,et al.  Adsorption and reorientation kinetics of lysozyme on hydrophobic surfaces , 2002 .

[94]  S. Seeger,et al.  Surface organization and cooperativity during nonspecific protein adsorption events. , 2008, The journal of physical chemistry. B.

[95]  E. Sackmann,et al.  Supported membranes on soft polymer cushions: fabrication, characterization and applications. , 2000, Trends in biotechnology.

[96]  N. Voelcker,et al.  Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: a force spectroscopy study. , 2009, The journal of physical chemistry. B.

[97]  R. Brown,et al.  Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. , 1998, Journal of cell science.

[98]  B. Alberts The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists , 1998, Cell.

[99]  R. Benz,et al.  Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study , 1979, The Journal of Membrane Biology.

[100]  Z. Figaszewski,et al.  Impedance Analysis of Complex Formation Equilibria in Phosphatidylcholine Bilayers Containing Decanoic Acid or Decylamine , 2011, Cell Biochemistry and Biophysics.

[101]  Amitabha Chattopadhyay,et al.  Effect of cholesterol on lateral diffusion of fluorescent lipid probes in native hippocampal membranes. , 2006, Chemistry and physics of lipids.

[102]  S. Xiao,et al.  Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[103]  A. Offenhäusser,et al.  Polysaccharide-Supported Planar Bilayer Lipid Model Membranes† , 2003 .

[104]  J. Lu,et al.  Protein adsorption studied by neutron reflection , 2007 .

[105]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[106]  Rob Phillips,et al.  Analytic models for mechanotransduction: Gating a mechanosensitive channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Anthony G. Frutos,et al.  Method for Fabricating Supported Bilayer Lipid Membranes on Gold , 2000 .

[108]  L. Chernomordik,et al.  Breakdown of lipid bilayer membranes in an electric field , 1983 .

[109]  Joseph D. Andrade,et al.  Protein adsorption and materials biocompatibility: A tutorial review and suggested hypotheses , 1986 .

[110]  Kevin Critchley,et al.  A novel method to fabricate patterned bilayer lipid membranes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[111]  P. Sens,et al.  Two-chamber AFM: probing membrane proteins separating two aqueous compartments , 2006, Nature Methods.

[112]  J. Andrade,et al.  Adsorption of complex proteins at interfaces , 1992 .

[113]  H. L. Scott,et al.  A theoretical study of lipid-protein interactions in bilayers. , 1983, Biophysical journal.

[114]  H. Elwing,et al.  Resonance-mode electrochemical impedance measurements of silicon dioxide supported lipid bilayer formation and ion channel mediated charge transport. , 2011, Analytical chemistry.

[115]  C. Svendsen,et al.  Stem cells: Breaking the brain-blood barrier , 1999, Nature.

[116]  J. Pont,et al.  Molecular Aspects of Transport Proteins , 1992 .

[117]  Jiawei Yan,et al.  Electrochemical impedance spectroscopy and atomic force microscopic studies of electrical and mechanical properties of nano-black lipid membranes and size dependence. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[118]  R. Frost,et al.  Pore spanning lipid bilayers on mesoporous silica having varying pore size. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[119]  Walter Schubert,et al.  Fluorescence detection of protein clusters in individual cells and tissue sections by using toponome imaging system: sample preparation and measuring procedures , 2007, Nature Protocols.

[120]  C. Grunwald,et al.  A case study on biological activity in a surface-bound multicomponent system: the biotin-streptavidin-peroxidase system. , 2007, The journal of physical chemistry. A.

[121]  L. Vroman,et al.  Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. , 1980, Blood.

[122]  A. Lee,et al.  Lipid selectivity of the calcium and magnesium ion dependent adenosinetriphosphatase, studied with fluorescence quenching by a brominated phospholipid. , 1982, Biochemistry.

[123]  J. Claverie,et al.  Polydopamine-Supported Lipid Bilayers , 2012, Materials.

[124]  V. Trusova,et al.  Electrostatically-controlled protein adsorption onto lipid bilayer: modeling adsorbate aggregation behavior. , 2008, Biophysical chemistry.

[125]  N. K. Ali,et al.  Nanoporous silicon as drug delivery systems for cancer therapies , 2012 .

[126]  E. Sackmann,et al.  On the application of supported bilayers as receptive layers for biosensors with electrical detection , 1993 .

[127]  T. Taguchi,et al.  Micropatterned composite membranes of polymerized and fluid lipid bilayers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[128]  W. Knoll,et al.  The protein-tethered lipid bilayer: a novel mimic of the biological membrane. , 2004, Biophysical journal.

[129]  G. Belfort,et al.  Intermolecular Forces between a Protein and a Hydrophilic Modified Polysulfone Film with Relevance to Filtration. , 2000 .

[130]  N. Thompson,et al.  Formation and Characterization of Planar Phospholipid Bilayers Supported on TiO2 and SrTiO3 Single Crystals , 2000 .

[131]  S. Seeger,et al.  Surface-induced spreading phenomenon of protein clusters , 2009 .

[132]  E. Rooney,et al.  Interaction of fatty acids with the calcium-magnesium ion dependent adenosinetriphosphatase from sarcoplasmic reticulum. , 1982, Biochemistry.

[133]  N. Fertig,et al.  Activity of single ion channel proteins detected with a planar microstructure , 2002 .

[134]  C. Calonder,et al.  Protein adsorption: kinetics and history dependence. , 2003, Journal of colloid and interface science.

[135]  C. Dekker,et al.  Biomimetic nanopores: learning from and about nature. , 2011, Trends in biotechnology.

[136]  F. Ivanauskas,et al.  Electrochemical impedance spectroscopy of tethered bilayer membranes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[137]  D. Talham,et al.  Supported lipid bilayers at skeletonized surfaces for the study of transmembrane proteins. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[138]  M. Karlsson,et al.  Protein adsorption orientation in the light of fluorescent probes: mapping of the interaction between site-directly labeled human carbonic anhydrase II and silica nanoparticles. , 2005, Biophysical journal.

[139]  S. Evans,et al.  Antibiotic action and peptidoglycan formation on tethered lipid bilayer membranes. , 2006, Angewandte Chemie.

[140]  P. Nollert,et al.  Impedance spectroscopy of porin and gramicidin pores reconstituted into supported lipid bilayers on indium-tin-oxide electrodes , 1998 .

[141]  Z. Figaszewski,et al.  Impedance analysis of phosphatidylcholine membranes modified with valinomycin , 2006, European Biophysics Journal.

[142]  D. Banji,et al.  NANOSTRUCTURED POROUS SILICON - A NOVEL BIOMATERIAL FOR DRUG DELIVERY , 2009 .

[143]  Fabrication of Porous Silicon Nanoparticles to Attach Clorgyline for Drug Delivery , 2011 .

[144]  G. Zampighi,et al.  Phospholipid vesicle formation and transmembrane protein incorporation using octyl glucoside. , 1981, Biochemistry.

[145]  R. Bashir,et al.  Lipid bilayer coated Al2O3 nanopore sensors: towards a hybrid biological solid-state nanopore , 2011, Biomedical microdevices.

[146]  Michael C. Petty,et al.  Langmuir-Blodgett films: Interaction of electromagnetic radiation with organic thin films , 1996 .

[147]  A. Nikolov,et al.  Ordered micelle structuring in thin films formed from anionic surfactant solutions: II. Model development , 1989 .

[148]  A. Minton,et al.  Adsorption of globular proteins on locally planar surfaces: models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria. , 1996, Biophysical journal.

[149]  V. Zhdanov,et al.  Protein adsorption and desorption on lipid bilayers. , 2010, Biophysical chemistry.

[150]  L. Tamm,et al.  Incorporation of cytochrome b5 into supported phospholipid bilayers by vesicle fusion to supported monolayers , 1992 .

[151]  W. Norde,et al.  My voyage of discovery to proteins in flatland ...and beyond. , 2008, Colloids and surfaces. B, Biointerfaces.

[152]  Wolfgang Knoll,et al.  Modeling ion transport in tethered bilayer lipid membranes. 1. Passive ion permeation. , 2008, The journal of physical chemistry. B.

[153]  F. Leermakers,et al.  Field theoretical analysis of driving forces for the uptake of proteins by like-charged polyelectrolyte brushes: effects of charge regulation and patchiness. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[154]  J. Chopineau,et al.  Biomimetic tethered lipid membranes designed for membrane-protein interaction studies , 2007, European Biophysics Journal.

[155]  A. Plant Supported Hybrid Bilayer Membranes as Rugged Cell Membrane Mimics , 1999 .

[156]  Eric A. Smith,et al.  Effects of cholesterol on phospholipid membranes: inhibition of the interdigitated gel phase of F-DPPC and F-DPPC/DPPC. , 2012, Chemistry and physics of lipids.

[157]  Fredrik Höök,et al.  Intact Vesicle Adsorption and Supported Biomembrane Formation from Vesicles in Solution: Influence of Surface Chemistry, Vesicle Size, Temperature, and Osmotic Pressure† , 2003 .

[158]  A. Guo,et al.  Formation of supported phospholipid bilayers on molecular surfaces: role of surface charge density and electrostatic interaction. , 2006, Biophysical journal.

[159]  C. Czeslik,et al.  Probing adsorption and aggregation of insulin at a poly(acrylic acid) brush. , 2010, Physical chemistry chemical physics : PCCP.

[160]  Carsten Werner,et al.  Controlled enhancement of transmembrane enzyme activity in polymer cushioned supported bilayer membranes , 2010 .

[161]  Y. Missirlis,et al.  Protein–material interactions: From micro-to-nano scale , 2008 .

[162]  M. Malmsten,et al.  Formation of Adsorbed Protein Layers. , 1998, Journal of colloid and interface science.

[163]  A. Plant,et al.  Reconstitution of the Pore-Forming Toxin α-Hemolysin in Phospholipid/18-Octadecyl-1-thiahexa(ethylene oxide) and Phospholipid/n-Octadecanethiol Supported Bilayer Membranes , 2000 .

[164]  C. Czeslik,et al.  Structure and protein binding capacity of a planar PAA brush. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[165]  C. Czeslik,et al.  Native-like structure of proteins at a planar poly(acrylic acid) brush. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[166]  R. Tilton,et al.  Coverage-Dependent Orientation of Lysozyme Adsorbed on Silica , 2003 .

[167]  Nicolas H Voelcker,et al.  Porous silicon biosensors on the advance. , 2009, Trends in biotechnology.

[168]  Zhiqiang Cheng,et al.  Poly(acrylic acid) brushes pattern as a 3D functional biosensor surface for microchips , 2013 .

[169]  F. Sanz,et al.  Influence of cholesterol on the phase transition of lipid bilayers: a temperature-controlled force spectroscopy study. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[170]  S. Evans,et al.  Direct electrochemical interaction between a modified gold electrode and a bacterial membrane extract. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[171]  Haeshin Lee,et al.  Mussel-Inspired Surface Chemistry for Multifunctional Coatings , 2007, Science.

[172]  Porous Materials to Support Bilayer Lipid Membranes for Ion Channel Biosensors , 2011 .

[173]  David S. Latchman,et al.  Biochemistry (4th edn) , 1995 .

[174]  R. Cerro,et al.  Investigations on transmembrane ion channels suspended over porous silicon membranes , 2013 .

[175]  P. Cullis,et al.  Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion technique , 1989 .

[176]  Z. Figaszewski,et al.  Impedance analysis of a phosphatidylcholine–phosphatidylethanolamine system in bilayer lipid membranes , 2006 .

[177]  P. Stroeve,et al.  Mobile Phospholipid Bilayers Supported on a Polyion/Alkylthiol Layer Pair , 2000 .

[178]  Steve Granick,et al.  Electrostatic stitching in gel-phase supported phospholipid bilayers. , 2006, The journal of physical chemistry. B.

[179]  A. Minton,et al.  Effects of excluded surface area and adsorbate clustering on surface adsorption of proteins I. Equilibrium models. , 2000, Biophysical chemistry.

[180]  R. Martín-Palma,et al.  Application of nanostructured porous silicon in the field of optics. A review , 2010 .

[181]  M. Luckey,et al.  Membrane Structural Biology: With Biochemical and Biophysical Foundations , 2008 .

[182]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[183]  X. Xu,et al.  The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. , 2000, Biochemistry.