Impurity Effect on the Formation of Terraces in GaAs LPE Growth

Terraces on the surfaces of GaAs LPE layers grown from Sn or Ge doped solutions are studied. The concentration of Sn (X) or Ge (X) in the growth solution is varied from 0.01 to 15 at%. The terraces sensitively depend on the doping concentration. The width and height of terraces decrease with increasing X or X. Though the effects of Sn and Ge on the terrace formation differ when compared as a function of X or X, they agree well when compared as a function of the concentration of Sn (NSn) or Ge (NGe) in grown layers. Es werden Terrassen auf den Oberflachen von GaAs-LPE-Schichten, die aus mit Sn oder Ge dotier-ten Losungen gezuchtet wurden, beobachtet. Die Konzentration von Sn (X) oder Ge (X) in der Zuchtungslosung wird von 0,01 bis 15 At% variiert. Die Terrassen hangen empfindlich von der Dotierungskonzentration ab. Die Breite und Hohe der Terrassen nehmen mit zunehmendem X oder X ab. Obwohl die Einflusse von Se und Ge auf die Terrassenbildung als Funktion von X oder X verschieden sind, stimmen sie gut in Abhangigkeit von den Konzentrationen von Sn (NSn) oder Ge (NGe) in den gewachsenen Schichten uberein.

[1]  T. Fukui,et al.  Baking Effect on the Surface Morphology of GaAs–AlGaAs LPE , 1977 .

[2]  T. Nishinaga,et al.  Surface Morphology of LPE Grown InP , 1977 .

[3]  M. Small,et al.  Wave morphologies on the surfaces of GaAs and Ga0.65Al0.35As grown LPE , 1977 .

[4]  D. Rode,et al.  Singular instabilities on LPE GaAs, CVD Si, and MBE InP growth surfaces , 1977 .

[5]  T. Fukui,et al.  Improved Surface Morphology of AlGaAs-GaAs Heteroepitaxial Wafers by Magnesium Doping , 1976 .

[6]  L. Eastman,et al.  In situ in etching technique for l.p.e. InP , 1976 .

[7]  T. Hara,et al.  Liquid-phase epitaxial growth of thin GaAs layers from supercooled solutions , 1976 .

[8]  Takeshi Kobayashi,et al.  Effect of Temperature Fluctuations on the Surface Terraces of GaAs-AlGaAs Double Hetero Structure Wafers , 1976 .

[9]  T. Hara,et al.  LPE growth of GaAs by supercooling technique: Elimination of surface terraces , 1975 .

[10]  S. Guha,et al.  Surface morphology of liquid-phase-epitaxial InP , 1975 .

[11]  A. Peaker,et al.  The growth of gallium phosphide layers of high surface quality by liquid phase epitaxy: A commercial process for green licht emitting diodes , 1974 .

[12]  D. Rode Crystal growth terraces and surface reconstruction , 1974 .

[13]  E. Bauser,et al.  Substrate orientation and surface morphology of GaAs liquid phase epitaxial layers , 1974 .

[14]  J. J. Hsieh,et al.  Thickness and surface morphology of GaAs LPE layers grown by supercooling, step-cooling, equilibrium-cooling, and two-phase solution techniques , 1974 .

[15]  M. Panish The Ga–As–Ge–Sn system: 800 °C liquidus isotherm and electrical properties of Ge–Sn‐doped GaAs , 1973 .

[16]  M. Panish The system Ga–As–Sn: Incorporation of Sn into GaAs , 1973 .

[17]  R. H. Saul,et al.  Surface morphology of liquid‐phase epitaxial layers , 1973 .

[18]  R. Route,et al.  A temperature gradient cell for liquid phase epitaxial growth of GaAs , 1972 .

[19]  J. Harris,et al.  Improved surface quality of solution grown GaAs and Pb1−xSnxTe epitaxial layers: A new technique , 1972 .

[20]  J. Vilms,et al.  The growth and properties of LPE GaAs , 1972 .

[21]  F. Rosztoczy,et al.  Distribution Coefficient of Germanium in Gallium Arsenide Crystals Grown from Gallium Solutions , 1971 .

[22]  H. Nelson,et al.  New Deep-Level Luminescence in GaAs:Sn , 1968 .

[23]  Elie Andre,et al.  Arseniure de gallium de haute mobilite obtenu par epitaxie en phase liquide , 1968 .