Implementing a subjective MCI model: An application to the furniture market

Abstract The MCI model is implemented in a subjective approach to managing store attraction. An application has been made to a spatial retail furniture market. The zeta-squared transformation is used to introduce consumer judgments collected as perceptions of the most determinant store attraction factors. Once the MCI model has been calibrated, various promotional offers are assessed by using the trade-off model. The resulting utility values are then introduced into the MCI model in a simulation of promotion.

[1]  Leonard S. Simon,et al.  Maximum Likelihood Estimation of Central-City Food Trading Areas , 1972 .

[2]  Lee G. Cooper,et al.  Parameter Estimation for a Multiplicative Competitive Interaction Model—Least Squares Approach , 1974 .

[3]  W. Anderson,et al.  Bank Selection Decisions and Market Segmentation , 1976 .

[4]  John Dawson,et al.  Store Choice, Store Location and Market Analysis , 1989 .

[5]  P. Green,et al.  Conjoint Analysis in Consumer Research: Issues and Outlook , 1978 .

[6]  W. T. Williams,et al.  Multivariate Methods in Plant Ecology: I. Association-Analysis in Plant Communities , 1959 .

[7]  Peter Wright,et al.  Retrospective reports on the causes of decisions. , 1981 .

[8]  A. Coskun Samli,et al.  The Use of GERT in the Planning and Control of Marketing Research , 1971 .

[9]  David A. Gautsch Specification of Patronage Models for Retail Center Choice , 1981 .

[10]  Lee G. Cooper,et al.  Voting for a Political Candidate Under Conditions of Minimal Information , 1974 .

[11]  W. Anderson,et al.  Bank Selection Decisions and Market Segmentation , 1976 .

[12]  Kent B. Monroe,et al.  A Path-Analytic Exploration of Retail Patronage Influences , 1975 .

[13]  Mark I. Alpert,et al.  Identification of Determinant Attributes: A Comparison of Methods , 1971 .

[14]  Glen L. Urban,et al.  A Mathematical Modeling Approach to Product Line Decisions , 1969 .

[15]  P. Green,et al.  Research for Marketing Decisions. , 1967 .

[16]  David L. Huff,et al.  Defining and Estimating a Trading Area , 1964 .

[17]  Vithala R. Rao,et al.  Conjoint Measurement- for Quantifying Judgmental Data , 1971 .

[18]  J. Kruskal Analysis of Factorial Experiments by Estimating Monotone Transformations of the Data , 1965 .

[19]  Lee G. Cooper,et al.  A Composite Mci Model For Integrating Attribute and Importance Information , 1984 .

[20]  Leonard S. Simon,et al.  AN ANALYSIS OF CENTRAL CITY NEIGHBORHOOD FOOD TRADING AREAS , 1972 .

[21]  Thomas J. Stanley,et al.  Image Inputs to a Probabilistic Model: Predicting Retail Potential , 1976 .

[22]  Lee G. Cooper,et al.  Technical Note---Simplified Estimation Procedures for MCI Models , 1982 .

[23]  James H. Myers,et al.  Semantic Properties of Selected Evaluation Adjectives , 1968 .

[24]  Vijay Mahajan,et al.  Use of Binary Attributes in the Multiplicative Competitive Interactive Choice Model , 1978 .

[25]  Ian Fenwick,et al.  A User's Guide to Conjoint Measurement in Marketing , 1978 .

[26]  John D. C. Little,et al.  A Geographic Model of an Urban Automobile Market , 1976 .

[27]  Gilbert A. Churchill,et al.  Marketing Research: Methodological Foundations , 1976 .

[28]  J. Gani,et al.  Proceedings of the Fourth International Conference on Operational Research , 1972 .

[29]  Russell I. Haley Benefit Segmentation: A Decision-oriented Research Tool , 1968 .

[30]  Gérard Cliquet Les modèles gravitaires et leur évolution , 1988 .

[31]  Lee G. Cooper,et al.  Standardizing Variables in Multiplicative Choice Models , 1983 .

[32]  Richard M. Johnson Trade-Off Analysis of Consumer Values , 1974 .

[33]  Henri Theil,et al.  A Multinomial Extension of the Linear Logit Model , 1969 .

[34]  W. Reilly The law of retail gravitation , 1931 .