Dimension transformation formula for conformal maps into the complement of an SLE curve

[1]  Ewain Gwynne,et al.  KPZ formulas for the Liouville quantum gravity metric , 2019, Transactions of the American Mathematical Society.

[2]  Xin Sun,et al.  Almost sure multifractal spectrum of Schramm–Loewner evolution , 2018 .

[3]  Dapeng Zhan Optimal Hölder continuity and dimension properties for SLE with Minkowski content parametrization , 2017, Probability Theory and Related Fields.

[4]  S. Smirnov,et al.  Conformal invariance in random cluster models. II. Full scaling limit as a branching SLE , 2016, 1609.08527.

[5]  S. Sheffield,et al.  Imaginary geometry III: reversibility of SLE_κ for κ\in (4,8) , 2016 .

[6]  Jason Miller,et al.  An almost sure KPZ relation for SLE and Brownian motion , 2015, The Annals of Probability.

[7]  Tom Alberts,et al.  A Dimension Spectrum for SLE Boundary Collisions , 2015, 1501.06212.

[8]  S. Sheffield,et al.  Liouville quantum gravity as a mating of trees , 2014, 1409.7055.

[9]  Christophe Garban,et al.  KPZ formula derived from Liouville heat kernel , 2014, J. Lond. Math. Soc..

[10]  Scott Sheffield,et al.  Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation , 2012, Communications in Mathematical Physics.

[11]  O. Yermolayeva,et al.  New exact results in spectra of stochastic Loewner evolution , 2014 .

[12]  Scott Sheffield,et al.  Quantum Loewner Evolution , 2013, 1312.5745.

[13]  Vincent Vargas,et al.  Gaussian multiplicative chaos and applications: A review , 2013, 1305.6221.

[14]  O. Yermolayeva,et al.  Average harmonic spectrum of the whole-plane SLE , 2013 .

[15]  Jason Miller,et al.  Intersections of SLE Paths: the double and cut point dimension of SLE , 2013, 1303.4725.

[16]  S. Sheffield,et al.  Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees , 2013, 1302.4738.

[17]  B. Duplantier,et al.  The Coefficient Problem and Multifractality of Whole-Plane SLE & LLE , 2012, 1211.2451.

[18]  Scott Sheffield,et al.  Critical Gaussian multiplicative chaos: Convergence of the derivative martingale , 2012, 1206.1671.

[19]  V. Vargas,et al.  Gaussian Multiplicative Chaos and KPZ Duality , 2012, Communications in Mathematical Physics.

[20]  S. Sheffield,et al.  Imaginary geometry I: interacting SLEs , 2012, 1201.1496.

[21]  S. Sheffield Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.

[22]  Jason Miller Universality for SLE(4) , 2010, 1010.1356.

[23]  G. Lawler,et al.  Almost sure multifractal spectrum for the tip of an SLE curve , 2009, 0911.3983.

[24]  G. Lawler,et al.  Optimal Holder exponent for the SLE path , 2009, 0904.1180.

[25]  Scott Sheffield,et al.  Liouville quantum gravity and KPZ , 2008, 0808.1560.

[26]  V. Vargas,et al.  KPZ formula for log-infinitely divisible multifractal random measures , 2008, 0807.1036.

[27]  I. Benjamini,et al.  KPZ in One Dimensional Random Geometry of Multiplicative Cascades , 2008, 0806.1347.

[28]  Dapeng Zhan Duality of chordal SLE, II , 2008, 0803.2223.

[29]  B. Duplantier,et al.  Harmonic measure and winding of random conformal paths: A Coulomb gas perspective , 2008, 0802.2280.

[30]  S. Smirnov,et al.  Harmonic Measure and SLE , 2008, 0801.1792.

[31]  Joan R. Lind Hölder regularity of the SLE trace , 2008 .

[32]  Dapeng Zhan Duality of chordal SLE , 2007, 0712.0332.

[33]  S. Sheffield,et al.  Hausdorff Dimension of the SLE Curve Intersected with the Real Line , 2007, 0711.4070.

[34]  Julien Dubédat Duality of Schramm-Loewner Evolutions , 2007, 0711.1884.

[35]  S. Smirnov Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.

[36]  O. Schramm,et al.  Contour lines of the two-dimensional discrete Gaussian free field , 2006, math/0605337.

[37]  O. Schramm,et al.  SLE coordinate changes , 2005, math/0505368.

[38]  S. Sheffield Gaussian free fields for mathematicians , 2003, math/0312099.

[39]  O. Schramm,et al.  Harmonic explorer and its convergence to SLE4 , 2003, math/0310210.

[40]  V. Beffara The dimension of the SLE curves , 2002, math/0211322.

[41]  O. Schramm,et al.  Conformal restriction: The chordal case , 2002, math/0209343.

[42]  B. Duplantier,et al.  Harmonic measure and winding of conformally invariant curves. , 2002, Physical review letters.

[43]  B. Duplantier Higher Conformal Multifractality , 2002, cond-mat/0207743.

[44]  O. Schramm,et al.  Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001, math/0112234.

[45]  O. Schramm,et al.  Basic properties of SLE , 2001, math/0106036.

[46]  Duplantier,et al.  Conformally invariant fractals and potential theory , 1999, Physical review letters.

[47]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.

[48]  B. Duplantier Harmonic Measure Exponents for Two-Dimensional Percolation , 1999, cond-mat/9901008.

[49]  B. Duplantier TWO-DIMENSIONAL COPOLYMERS AND EXACT CONFORMAL MULTIFRACTALITY , 1998, cond-mat/9812439.

[50]  Alexander M. Polyakov,et al.  Fractal Structure of 2D Quantum Gravity , 1988 .

[51]  J. Hawkes,et al.  Uniform dimension results for processes with independent increments , 1974 .

[52]  Jason Miller,et al.  Brownian motion correlation in the peanosphere for κ > 8 , 2016 .

[53]  S. Sheffield,et al.  Imaginary geometry II: Reversibility of SLEκ(ρ1;ρ2) for κ∈(0,4). , 2016 .

[54]  Juhan Aru KPZ relation does not hold for the level lines and SLEκ flow lines of the Gaussian free field , 2015 .

[55]  J. Bertoin Subordinators: Examples and Applications , 1999 .

[56]  J. Kahane Sur le chaos multiplicatif , 1985 .