Dimension transformation formula for conformal maps into the complement of an SLE curve
暂无分享,去创建一个
[1] Ewain Gwynne,et al. KPZ formulas for the Liouville quantum gravity metric , 2019, Transactions of the American Mathematical Society.
[2] Xin Sun,et al. Almost sure multifractal spectrum of Schramm–Loewner evolution , 2018 .
[3] Dapeng Zhan. Optimal Hölder continuity and dimension properties for SLE with Minkowski content parametrization , 2017, Probability Theory and Related Fields.
[4] S. Smirnov,et al. Conformal invariance in random cluster models. II. Full scaling limit as a branching SLE , 2016, 1609.08527.
[5] S. Sheffield,et al. Imaginary geometry III: reversibility of SLE_κ for κ\in (4,8) , 2016 .
[6] Jason Miller,et al. An almost sure KPZ relation for SLE and Brownian motion , 2015, The Annals of Probability.
[7] Tom Alberts,et al. A Dimension Spectrum for SLE Boundary Collisions , 2015, 1501.06212.
[8] S. Sheffield,et al. Liouville quantum gravity as a mating of trees , 2014, 1409.7055.
[9] Christophe Garban,et al. KPZ formula derived from Liouville heat kernel , 2014, J. Lond. Math. Soc..
[10] Scott Sheffield,et al. Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation , 2012, Communications in Mathematical Physics.
[11] O. Yermolayeva,et al. New exact results in spectra of stochastic Loewner evolution , 2014 .
[12] Scott Sheffield,et al. Quantum Loewner Evolution , 2013, 1312.5745.
[13] Vincent Vargas,et al. Gaussian multiplicative chaos and applications: A review , 2013, 1305.6221.
[14] O. Yermolayeva,et al. Average harmonic spectrum of the whole-plane SLE , 2013 .
[15] Jason Miller,et al. Intersections of SLE Paths: the double and cut point dimension of SLE , 2013, 1303.4725.
[16] S. Sheffield,et al. Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees , 2013, 1302.4738.
[17] B. Duplantier,et al. The Coefficient Problem and Multifractality of Whole-Plane SLE & LLE , 2012, 1211.2451.
[18] Scott Sheffield,et al. Critical Gaussian multiplicative chaos: Convergence of the derivative martingale , 2012, 1206.1671.
[19] V. Vargas,et al. Gaussian Multiplicative Chaos and KPZ Duality , 2012, Communications in Mathematical Physics.
[20] S. Sheffield,et al. Imaginary geometry I: interacting SLEs , 2012, 1201.1496.
[21] S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.
[22] Jason Miller. Universality for SLE(4) , 2010, 1010.1356.
[23] G. Lawler,et al. Almost sure multifractal spectrum for the tip of an SLE curve , 2009, 0911.3983.
[24] G. Lawler,et al. Optimal Holder exponent for the SLE path , 2009, 0904.1180.
[25] Scott Sheffield,et al. Liouville quantum gravity and KPZ , 2008, 0808.1560.
[26] V. Vargas,et al. KPZ formula for log-infinitely divisible multifractal random measures , 2008, 0807.1036.
[27] I. Benjamini,et al. KPZ in One Dimensional Random Geometry of Multiplicative Cascades , 2008, 0806.1347.
[28] Dapeng Zhan. Duality of chordal SLE, II , 2008, 0803.2223.
[29] B. Duplantier,et al. Harmonic measure and winding of random conformal paths: A Coulomb gas perspective , 2008, 0802.2280.
[30] S. Smirnov,et al. Harmonic Measure and SLE , 2008, 0801.1792.
[31] Joan R. Lind. Hölder regularity of the SLE trace , 2008 .
[32] Dapeng Zhan. Duality of chordal SLE , 2007, 0712.0332.
[33] S. Sheffield,et al. Hausdorff Dimension of the SLE Curve Intersected with the Real Line , 2007, 0711.4070.
[34] Julien Dubédat. Duality of Schramm-Loewner Evolutions , 2007, 0711.1884.
[35] S. Smirnov. Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.
[36] O. Schramm,et al. Contour lines of the two-dimensional discrete Gaussian free field , 2006, math/0605337.
[37] O. Schramm,et al. SLE coordinate changes , 2005, math/0505368.
[38] S. Sheffield. Gaussian free fields for mathematicians , 2003, math/0312099.
[39] O. Schramm,et al. Harmonic explorer and its convergence to SLE4 , 2003, math/0310210.
[40] V. Beffara. The dimension of the SLE curves , 2002, math/0211322.
[41] O. Schramm,et al. Conformal restriction: The chordal case , 2002, math/0209343.
[42] B. Duplantier,et al. Harmonic measure and winding of conformally invariant curves. , 2002, Physical review letters.
[43] B. Duplantier. Higher Conformal Multifractality , 2002, cond-mat/0207743.
[44] O. Schramm,et al. Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001, math/0112234.
[45] O. Schramm,et al. Basic properties of SLE , 2001, math/0106036.
[46] Duplantier,et al. Conformally invariant fractals and potential theory , 1999, Physical review letters.
[47] Oded Schramm,et al. Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.
[48] B. Duplantier. Harmonic Measure Exponents for Two-Dimensional Percolation , 1999, cond-mat/9901008.
[49] B. Duplantier. TWO-DIMENSIONAL COPOLYMERS AND EXACT CONFORMAL MULTIFRACTALITY , 1998, cond-mat/9812439.
[50] Alexander M. Polyakov,et al. Fractal Structure of 2D Quantum Gravity , 1988 .
[51] J. Hawkes,et al. Uniform dimension results for processes with independent increments , 1974 .
[52] Jason Miller,et al. Brownian motion correlation in the peanosphere for κ > 8 , 2016 .
[53] S. Sheffield,et al. Imaginary geometry II: Reversibility of SLEκ(ρ1;ρ2) for κ∈(0,4). , 2016 .
[54] Juhan Aru. KPZ relation does not hold for the level lines and SLEκ flow lines of the Gaussian free field , 2015 .
[55] J. Bertoin. Subordinators: Examples and Applications , 1999 .
[56] J. Kahane. Sur le chaos multiplicatif , 1985 .