Approximate stabilizer rank and improved weak simulation of Clifford-dominated circuits for qudits

Bravyi and Gosset recently gave classical simulation algorithms for quantum circuits dominated by Clifford operations. These algorithms scale exponentially with the number of T-gate in the circuit, but polynomially in the number of qubits and Clifford operations. Here we extend their algorithm to qudits of odd prime dimensions. We generalize their approximate stabilizer rank method for weak simulation to qudits and obtain the scaling of the approximate stabilizer rank with the number of single-qudit magic states. We also relate the canonical form of qudit stabilizer states to Gauss sum evaluations. We give an O(n^3) algorithm to calculating the inner product of two n-qudit stabilizer states.

[1]  R. Spekkens,et al.  Quantum from principles , 2012, ArXiv.

[2]  Igor L. Markov,et al.  Quantum Supremacy Is Both Closer and Farther than It Appears , 2018, ArXiv.

[3]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[4]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[5]  Nathan Wiebe,et al.  Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation , 2012, 1210.1783.

[6]  P. Love,et al.  The non-disjoint ontic states of the Grassmann ontological model, transformation contextuality, and the single qubit stabilizer subtheory , 2018, Journal of Physics A: Mathematical and Theoretical.

[7]  D. Leung,et al.  Methodology for quantum logic gate construction , 2000, quant-ph/0002039.

[8]  Mark Howard,et al.  Qudit versions of the qubit "pi-over-eight" gate , 2012, 1206.1598.

[9]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[10]  Thomas Häner,et al.  0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.

[11]  David Marcus Appleby,et al.  Properties of the extended Clifford group with applications to SIC-POVMs and MUBs , 2009, 0909.5233.

[12]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[13]  David Gosset,et al.  Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. , 2016, Physical review letters.

[14]  Alán Aspuru-Guzik,et al.  qHiPSTER: The Quantum High Performance Software Testing Environment , 2016, ArXiv.

[15]  Mark Howard,et al.  Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing. , 2016, Physical review letters.

[16]  Christopher Ferrie,et al.  Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations , 2007, 0711.2658.

[17]  N. J. A. Sloane,et al.  The Invariants of the Cli ord , 1999 .

[18]  Joel J. Wallman,et al.  Estimating Outcome Probabilities of Quantum Circuits Using Quasiprobabilities. , 2015, Physical review letters.

[19]  Daniel Gottesman Fault-Tolerant Quantum Computation with Higher-Dimensional Systems , 1998, QCQC.

[20]  P. Oscar Boykin,et al.  On universal and fault-tolerant quantum computing: a novel basis and a new constructive proof of universality for Shor's basis , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[21]  Huangjun Zhu SIC POVMs and Clifford groups in prime dimensions , 2010, 1003.3591.

[22]  J Eisert,et al.  Positive Wigner functions render classical simulation of quantum computation efficient. , 2012, Physical review letters.

[23]  Christopher A. Fuchs,et al.  The SIC Question: History and State of Play , 2017, Axioms.

[24]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[25]  Maarten Van den Nest,et al.  Classical simulation of quantum computation, the gottesman-Knill theorem, and slightly beyond , 2008, Quantum Inf. Comput..

[26]  Igor L. Markov,et al.  Efficient Inner-product Algorithm for Stabilizer States , 2012, ArXiv.

[27]  B. Moor,et al.  Clifford group, stabilizer states, and linear and quadratic operations over GF(2) , 2003, quant-ph/0304125.

[28]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[29]  Mark Howard,et al.  Simulation of quantum circuits by low-rank stabilizer decompositions , 2018, Quantum.

[30]  Robert W. Spekkens,et al.  Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction , 2011, 1111.5057.

[31]  J. Smolin,et al.  Trading Classical and Quantum Computational Resources , 2015, 1506.01396.

[32]  B. Moor,et al.  Stabilizer states and Clifford operations for systems of arbitrary dimensions and modular arithmetic , 2004, quant-ph/0408190.

[33]  Robert W Spekkens,et al.  Negativity and contextuality are equivalent notions of nonclassicality. , 2006, Physical review letters.

[34]  W. Wootters A Wigner-function formulation of finite-state quantum mechanics , 1987 .

[35]  Lucas Kocia,et al.  Stationary Phase Method in Discrete Wigner Functions and Classical Simulation of Quantum Circuits , 2018, Quantum.

[36]  Victor Veitch,et al.  Contextuality supplies the ‘magic’ for quantum computation , 2014, Nature.

[37]  D. Browne,et al.  Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.

[38]  H. Neven,et al.  Simulation of low-depth quantum circuits as complex undirected graphical models , 2017, 1712.05384.

[39]  Lucas Kocia,et al.  Measurement contextuality and Planck’s constant , 2017, New Journal of Physics.

[40]  Mark Howard,et al.  Maximum nonlocality and minimum uncertainty using magic states , 2015, 1501.05319.

[41]  Lucas Kocia,et al.  Discrete Wigner formalism for qubits and noncontextuality of Clifford gates on qubit stabilizer states , 2017, 1705.08869.