3D inversion and resolution analysis of land-based CSEM data from the Ketzin CO2 storage formation

ABSTRACTWe evaluated 3D inversion of land controlled-source electromagnetic (CSEM) data collected across the Ketzin CO2 storage formation. A newly developed, parallel and distributed 3D inversion code, which is based on a direct forward solver, has been used. This inversion scheme allowed us to calculate the Jacobian matrix explicitly within a reasonable time and use it to calculate regularization parameters, inspect survey coverage, and carry out resolution analysis. After demonstrating that the magnetic field components are sensitive to conductors only, whereas the electric field components are sensitive to all features of interest, we continued to work with electric field data only. Estimates of data uncertainty obtained from robust processing were used for automated data preselection and weighting during inversion. We tested different regularization techniques and a range of starting models to explore the model space and assess the influence of regularization on the inversion images. We further demons...

[1]  Christopher Juhlin,et al.  Baseline characterization of the CO2SINK geological storage site at Ketzin, Germany , 2006 .

[2]  Gregory A. Newman,et al.  Image appraisal for 2-D and 3-D electromagnetic inversion , 2000 .

[3]  G. Newman,et al.  Frequency‐domain modelling of airborne electromagnetic responses using staggered finite differences , 1995 .

[4]  Rita Streich,et al.  Electromagnetic fields generated by finite‐length wire sources: comparison with point dipole solutions , 2011 .

[5]  Anne M. Trehu,et al.  A marine electromagnetic survey to detect gas hydrate at Hydrate Ridge, Oregon , 2011 .

[6]  Eldad Haber,et al.  Finite element based inversion for time-harmonic electromagnetic problems , 2013 .

[7]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[8]  Thomas Kalscheuer,et al.  A non-linear truncated SVD variance and resolution analysis of two-dimensional magnetotelluric models , 2007 .

[9]  Hee Joon Kim,et al.  A unified transformation function for lower and upper bounding constraints on model parameters in electrical and electromagnetic inversion , 2011 .

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  S. Constable Ten years of marine CSEM for hydrocarbon exploration , 2010 .

[12]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[13]  Chester J. Weiss,et al.  Mapping thin resistors and hydrocarbons with marine EM methods, Part II -Modeling and analysis in 3D , 2006 .

[14]  A. Hördt,et al.  Interpretation of long-offset transient electromagnetic data from Mount Merapi, Indonesia, using a three-dimensional optimization approach , 2004 .

[15]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[16]  David L.B. Jupp,et al.  Stable Iterative Methods for the Inversion of Geophysical Data , 2007 .

[17]  L. Pedersen,et al.  Determination of the regularization level of truncated singular‐value decomposition inversion: The case of 1D inversion of MT data , 2004 .

[18]  Per Christian Hansen,et al.  Analysis of depth resolution in potential-field inversion , 2005 .

[19]  M. A. Pérez-Flores,et al.  Imaging of 3D electromagnetic data at low-induction numbers , 2012 .

[20]  David L. Alumbaugh,et al.  On the physics of the marine controlled-source electromagnetic method , 2007 .

[21]  Michael Commer,et al.  New advances in three‐dimensional controlled‐source electromagnetic inversion , 2007 .

[22]  Alexander V. Grayver,et al.  Three-dimensional parallel distributed inversion of CSEM data using a direct forward solver , 2013 .

[23]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[24]  Neubauer,et al.  A first attempt at monitoring underground gas storage by means of time‐lapse multichannel transient electromagnetics , 2000 .

[25]  Robert A. van de Geijn,et al.  Elemental: A New Framework for Distributed Memory Dense Matrix Computations , 2013, TOMS.

[26]  S. Friedel,et al.  Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach , 2003 .

[27]  Max A. Meju,et al.  Useful characteristics of shallow and deep marine CSEM responses inferred from 3D finite-difference modeling , 2009 .

[28]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[29]  A. Christiansen,et al.  A review of helicopter‐borne electromagnetic methods for groundwater exploration , 2009 .

[30]  S. Constable Review paper: Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding , 2013 .

[31]  E. Haber,et al.  On optimization techniques for solving nonlinear inverse problems , 2000 .

[32]  A. Marui,et al.  Various-scale electromagnetic investigations of high-salinity zones in a coastal plain , 2006 .

[33]  Anisotropic Inversion of CSEM Data From Offshore Malaysia , 2012 .

[34]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[35]  Douglas W. Oldenburg,et al.  Three dimensional inversion of multisource time domain electromagnetic data , 2013 .

[36]  Thomas Kalscheuer,et al.  Non-linear model error and resolution properties from two-dimensional single and joint inversions of direct current resistivity and radiomagnetotelluric data , 2010 .

[37]  Christopher Juhlin,et al.  The Geology of the CO2SINK Site: From Regional Scale to Laboratory Scale , 2009 .

[38]  George V. Keller,et al.  Megasource, time-domain electromagnetic sounding methods , 1984 .

[39]  Rita Streich,et al.  Robust processing of noisy land-based controlled-source electromagnetic data , 2013 .

[40]  Bruce D. Smith,et al.  Calibration and filtering strategies for frequency domain electromagnetic data , 2012 .

[41]  James Macnae,et al.  A controlled-source, time-domain electromagnetic survey over an upthrust section of Archean crust in the Kapuskasing Structural Zone , 1989 .

[42]  Douglas W. Oldenburg,et al.  Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit , 2012 .

[43]  Matthew G. Knepley,et al.  PETSc Users Manual (Rev. 3.3) , 2013 .

[44]  Eldad Haber,et al.  Numerical strategies for the solution of inverse problems , 1997 .

[45]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[46]  A. Abubakar,et al.  A compressed implicit Jacobian scheme for 3D electromagnetic data inversion , 2011 .

[47]  Evert Slob,et al.  A feasibility study of land CSEM reservoir monitoring in a complex 3-D model , 2010 .

[48]  M. Haeckel,et al.  Evaluation of gas hydrate deposits in an active seep area using marine controlled source electromagnetics: Results from Opouawe Bank, Hikurangi Margin, New Zealand , 2010 .

[49]  Rita Streich,et al.  3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy , 2009 .

[50]  D. Connell,et al.  A numerical comparison of time and frequency‐domain marine electromagnetic methods for hydrocarbon exploration in shallow water , 2013 .

[51]  G. Backus,et al.  The Resolving Power of Gross Earth Data , 1968 .

[52]  G. A. Newman,et al.  Imaging CSEM data in the presence of electrical anisotropy - eScholarship , 2010 .

[53]  David L. Alumbaugh,et al.  The practical application of 2D inversion to marine controlled-source electromagnetic data , 2010 .

[54]  Michael Commer,et al.  Electromagnetic evidence for an ancient avalanche caldera rim on the south flank of Mount Merapi, Indonesia , 2007 .

[55]  A. Chave On the electromagnetic fields produced by marine frequency domain controlled sources , 2009 .