A new prediction interval for binomial random variable based on inferential models

Abstract The prediction interval (PI) is useful to predict future observations based on the information available in a given sample and has many practical applications. The Score, Bayesian and Fiducial PIs are well-known existing methods. Recently, two PIs based on the inferential model (IM) have been established. However, they have either poor or conservative behavior of the coverage probability in some cases. In this paper, we propose a new PI from the randomized IM for the binomial random variable. Our non-randomized approximation has the better coverage probability and stability, which is confirmed by the simulation studies. Moreover, our ideas can be applied to other discrete populations.

[1]  Ryan Martin,et al.  Marginal Inferential Models: Prior-Free Probabilistic Inference on Interest Parameters , 2013, 1306.3092.

[2]  Ryan Martin,et al.  Prior-Free Probabilistic Prediction of Future Observations , 2014, Technometrics.

[3]  Alan Agresti,et al.  Frequentist Performance of Bayesian Confidence Intervals for Comparing Proportions in 2 × 2 Contingency Tables , 2005, Biometrics.

[4]  J. Bernardo Reference Analysis , 2005 .

[5]  J. Lawless,et al.  Frequentist prediction intervals and predictive distributions , 2005 .

[6]  Chuanhai Liu,et al.  Inferential Models: A Framework for Prior-Free Posterior Probabilistic Inference , 2012, 1206.4091.

[7]  Jan Hannig,et al.  Fiducial prediction intervals , 2012 .

[8]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[9]  Michael S. Hamada,et al.  Bayesian Prediction Intervals and Their Relationship to Tolerance Intervals , 2004, Technometrics.

[10]  R. A. Fisher,et al.  Statistical methods and scientific inference. , 1957 .

[11]  Todd Iverson,et al.  Generalized fiducial inference , 2014 .

[12]  Jagdish K. Patel,et al.  Prediction intervals - a review , 1989 .

[13]  Randy C. S. Lai,et al.  Generalized Fiducial Inference: A Review and New Results , 2016 .

[14]  Ryan Martin,et al.  Conditional inferential models: combining information for prior‐free probabilistic inference , 2012, 1211.1530.

[15]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[16]  Kerrie Mengersen,et al.  Posterior predictive arguments in favor of the Bayes-Laplace prior as the consensus prior for binomial and multinomial parameters , 2009 .

[17]  Arthur P. Dempster,et al.  The Dempster-Shafer calculus for statisticians , 2008, Int. J. Approx. Reason..

[18]  H. Iyer,et al.  Fiducial Generalized Confidence Intervals , 2006 .

[19]  L. Mattner,et al.  Stochastic ordering of classical discrete distributions , 2009, Advances in Applied Probability.

[20]  L. J. Bain,et al.  Prediction intervals based on partial observations for some discrete distributions , 1993 .

[21]  Jan Hannig Generalized fiducial inference via discretization , 2013 .

[22]  Wayne Nelson,et al.  Applied life data analysis , 1983 .

[23]  S. Solomon,et al.  Predicting future responses based on possibly mis-specified working models , 2008 .

[24]  Hsiuying Wang,et al.  Closed Form Prediction Intervals Applied for Disease Counts , 2010 .

[25]  W. Stevens,et al.  Fiducial limits of the parameter of a discontinuous distribution. , 1950, Biometrika.

[26]  Prior-free probabilistic interval estimation for binomial proportion , 2018, TEST.

[27]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[28]  Chuanhai Liu,et al.  Frameworks for prior‐free posterior probabilistic inference , 2014, 1407.8225.

[29]  David J. Olive Prediction intervals for regression models , 2007, Comput. Stat. Data Anal..