Polar optical phonons in wurtzite spheroidal quantum dots: theory and application to ZnO and ZnO/MgZnO nanostructures

Polar optical-phonon modes are derived analytically for spheroidal quantum dots with wurtzite crystal structure. The developed theory is applied to freestanding spheroidal ZnO quantum dots and to spheroidal ZnO quantum dots embedded into a MgZnO crystal. The wurtzite (anisotropic) quantum dots are shown to have strongly different polar optical-phonon modes in comparison with zincblende (isotropic) quantum dots. The obtained results allow one to explain and accurately predict phonon peaks in the Raman spectra of wurtzite nanocrystals, nanorods (prolate spheroids), and epitaxial quantum dots (oblate spheroids).

[1]  Vladimir A Fonoberov,et al.  Interplay of confinement, strain, and piezoelectric effects in the optical spectrum of GaN quantum dots. , 2003, Journal of nanoscience and nanotechnology.

[2]  G. Marques,et al.  Interface optical phonons in spheroidal quantum dots , 2002 .

[3]  Photoluminescence of tetrahedral quantum-dot quantum wells. , 2004, Physical review letters.

[4]  Chen Chen,et al.  Confined and interface phonon modes in GaN/ZnO heterostructures , 2004 .

[5]  A. Balandin,et al.  Radiative lifetime of excitons in ZnO nanocrystals: The dead-layer effect , 2004 .

[6]  Reinecke,et al.  Classical interface modes of quantum dots. , 1992, Physical review. B, Condensed matter.

[7]  Multiphonon Raman scattering in semiconductor nanocrystals: Importance of nonadiabatic transitions , 2001, cond-mat/0205491.

[8]  Interface optical phonons in spheroidal dots: Raman selection rules , 2001, cond-mat/0110465.

[9]  M. Stroscio,et al.  Polar interface vibrations in GaN/AlN quantum dots: Essential effects of crystal anisotropy , 2002 .

[10]  M. Rajalakshmi,et al.  Optical phonon confinement in zinc oxide nanoparticles , 2000 .

[11]  V. Fomin,et al.  Bulk and Interface Polarons in Quantum Wires and Dots , 1994 .

[12]  Excitonic properties of strained wurtzite and zinc-blende GaN/AlxGa1−xN quantum dots , 2003, cond-mat/0310363.

[13]  W. Elenbaas The hypothesis of minimum voltage in the theory of the arc , 1946 .

[14]  M. Stroscio,et al.  Electron scattering via interactions with optical phonons in wurtzite crystals , 2004 .

[15]  T. Butz,et al.  Infrared dielectric functions and phonon modes of wurtzite MgxZn1−xO (x⩽0.2) , 2002 .

[16]  Denis L. Rousseau,et al.  First-Order Raman Effect in Wurtzite-Type Crystals , 1969 .

[17]  A. Balandin,et al.  Interface and confined optical phonons in wurtzite nanocrystals , 2004, cond-mat/0405681.

[18]  Chen Chen,et al.  Surface-optical phonon assisted transitions in quantum dots , 2004 .

[19]  Alexander A. Balandin,et al.  Optical properties of wurtzite and zinc-blende GaN/AlN quantum dots , 2004 .

[20]  M. Stroscio,et al.  Polar surface vibration strips on GaN/AlN quantum dots and their interaction with confined electrons , 2002 .

[21]  Mitra Dutta,et al.  Phonons in Nanostructures , 2001 .

[22]  A. Balandin,et al.  Origin of ultraviolet photoluminescence in ZnO quantum dots: Confined excitons versus surface-bound impurity exciton complexes , 2004 .