Graphs with distance guarantees

One goal in network design is the construction of sparse networks that guarantee short distances with respect to some given distance requirements. By this, it can be guaranteed, for example, that delays that are incurred by link faults are bounded. An appropriate graph-theoretic model for this is the concept of k–spanners: Given a graph G, a k–spanner of G is a spanning subgraph S, such that the distance between any two vertices in S is at most k times longer than the distance in G. Research in this area has mainly concentrated on two aspects: minimum k–spanners, i.e., k–spanners that contain the fewest edges among all k–spanners, and tree k–spanners, i.e., k–spanners that are trees. In this thesis, we use k–spanners to model further desirable properties from network design (such as reliability) within a graph-theoretic framework. Our main emphasis is on sparse graphs that guarantee short distances, and we are interested in simple structures and fault-tolerance. Basically, our research comprises two major parts: In the first part, we use k–spanners as a means of analyzing a given graph: We are given a graph and the problem is to decide whether it contains some particular form of k–spanner. Often, k–spanners are difficult to find, and most problems in this area are NP-hard. Moreover, both the concepts of minimum or tree k–spanners exhibit serious drawbacks with respect to typical applications in network design. To overcome these difficulties, we propose three approaches stemming from different thematic contexts: • k–spanners within the context of planarity; • k–spanners that are sparse, simply structured, and fault-tolerant; • generalized k–spanners using auxiliary vertices. To summarize, our results in this first part of the thesis indicate even more that the problem of finding k–spanners in their different shaping is difficult, and only some special cases can be solved efficiently. In contrast, in the second part of this thesis, we use k–spanners to construct graphs from scratch, subject to some given requirements. We introduce graph-theoretic models for graphs that guarantee constant delays even if a multiple number of edges fail. In particular, we consider two cases: an unlimited and a limited number of edge faults. Though we cannot hope for finding efficient characterizations for both graph classes, we give characterizations and examine some popular graph classes, graph operations and network topologies with respect to the given requirements. Deutsche Zusammenfassung Ein wichtiges Teilproblem beim Entwurf von Netzwerken ist das Finden von dunnen Netzwerken, in denen die Abstande zwischen je zwei Knoten nicht zu gros bzgl. vorgegebener Entfernungsbedingungen werden. Auf diese Weise kann beispielsweise garantiert werden, dass Verzogerungen durch den Wegfall von Verbindungen unter Kontrolle gehalten werden. Ein geeignetes graphentheoretisches Modell dafur sind k-Spanner : Ein aufspannender Teilgraph S heist k–Spanner eines Graphen G fur ein k ≥ 1, falls die Distanz in S fur jedes Knotenpaar hochstens das k–fache der Distanz in G ist. Die Forschung im Bereich der k–Spanner hat sich meist auf das Studium von minimalen k–Spannern (also k–Spanner mit der kleinstmoglichen Kantenzahl) oder k– Baumspannern (also k–Spanner, die Baumstruktur haben) konzentriert. In dieser Dissertation verwenden wir das Konzept der k–Spanner, um zusatzliche wunschenswerte Eigenschaften (wie zum Beispiel Zuverlassigkeit) graphentheoretisch zu fassen. Wir beschaftigen uns dabei hauptsachlich mit dunnen Graphen, die kurze Distanzen garantieren und dabei eine moglichst einfache Struktur besitzen beziehungsweise fehlertolerant sind. Die Ergebnisse lassen sich im wesentlichen in zwei Hauptteile untergliedern. Im ersten Teil verwenden wir k–Spanner, um einen vorgegebenen Graphen zu analysieren, indem wir untersuchen, ob er eine bestimmte Form von k–Spanner enthalt. Fur die bislang untersuchten, oben erwahnten Varianten hat sich dieses Problem jedoch meist als schwierig beziehungsweise NP–schwer herausgestellt. Auserdem hat sowohl das Konzept der minimalen k–Spanner als auch das der k–Baumspanner Nachteile in Bezug auf netzwerktypische Anforderungen. Um dies zu uberwinden, betrachten wir drei Modelle aus verschiedenen thematischen Kontexten: • k–Spanner und Planaritat; • dunne, einfach strukturierte k–Spanner, die fehlertolerant sind; • verallgemeinerte k–Spanner, die Hilfsknoten berucksichtigen. Die Ergebnisse belegen, dass Probleme im Bereich der k–Spanner schwierig sind. Oft konnen nur Teilprobleme effizient gelost werden. Der zweite Teil dieser Dissertation verfolgt ein artverwandtes Problem, jedoch diesmal aus der Perspektive der Graph-Konstruktion: Unser Ziel ist es, Graphen zu konstruieren, die hochstens konstante Verzogerungen garantieren, selbst wenn beliebige Kanten des Graphen ausfallen. Es zeigt sich, dass das allgemeine Problem der Erkennung der jeweiligen Graphklassen NP–schwer ist. Wir geben jedoch Charakterisierungen an und beschreiben, wie sich einige populare Graphklassen, Graphoperationen und NetzwerkTopologien bezuglich der gegebenen Eigenschaften verhalten.

[1]  Takao Nishizeki,et al.  Planar Graphs: Theory and Algorithms , 1988 .

[2]  J. Soares Graph Spanners: a Survey , 1992 .

[3]  Siam J. CoMPtrr,et al.  FINDING A MAXIMUM CUT OF A PLANAR GRAPH IN POLYNOMIAL TIME * , 2022 .

[4]  Jehoshua Bruck,et al.  Fault-tolerant meshes with small degree , 1993, SPAA '93.

[5]  Marie-Claude Heydemann,et al.  Spanners of Hypercube-Derived Networks , 1996, SIAM J. Discret. Math..

[6]  Serafino Cicerone,et al.  Graphs with bounded induced distance , 1998, Discret. Appl. Math..

[7]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[8]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[9]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1991, Theor. Comput. Sci..

[10]  George N. Rouskas,et al.  Cost, Delay, and Delay Variation Conscious Multicast Routing , 1997 .

[11]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[12]  Arthur L. Liestman,et al.  Additive Spanners for Hypercubes , 1991, Parallel Process. Lett..

[13]  Giri Narasimhan,et al.  New sparseness results on graph spanners , 1992, SCG '92.

[14]  M. Stoer Design of Survivable Networks , 1993 .

[15]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[16]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[17]  Andreas Huck Independent trees in graphs , 1994, Graphs Comb..

[18]  Bruce M. Maggs,et al.  Reconfiguring Arrays with Faults Part I: Worst-Case Faults , 1997, SIAM J. Comput..

[19]  Michiel H. M. Smid,et al.  Lower bounds for computing geometric spanners and approximate shortest paths , 1996, Discret. Appl. Math..

[20]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[21]  Samir Khuller,et al.  On Independent Spanning Trees , 1992, Inf. Process. Lett..

[22]  Giorgio Ausiello,et al.  Structure Preserving Reductions among Convex Optimization Problems , 1980, J. Comput. Syst. Sci..

[23]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[24]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[25]  Ting-Yi Sung,et al.  Multiple-Edge-Fault Tolerance with Respect to Hypercubes , 1997, IEEE Trans. Parallel Distributed Syst..

[26]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[27]  Giri Narasimhan,et al.  Efficient algorithms for constructing fault-tolerant geometric spanners , 1998, STOC '98.

[28]  Nicola Santoro,et al.  Labelling and Implicit Routing in Networks , 1985, Computer/law journal.

[29]  C. Pandu Rangan,et al.  Restrictions of Minimum Spanner Problems , 1997, Inf. Comput..

[30]  Fred S. Annexstein Fault tolerance in hypercube-derivative networks , 1989, SPAA '89.

[31]  E. Howorka A CHARACTERIZATION OF DISTANCE-HEREDITARY GRAPHS , 1977 .

[32]  Arthur L. Liestman,et al.  Grid spanners , 1993, Networks.

[33]  Feodor F. Dragan,et al.  Distance Approximating Trees for Chordal and Dually Chordal Graphs , 1999, J. Algorithms.

[34]  Dagmar Handke,et al.  Independent tree spanners: fault-tolerant spanning trees with constant distance guarantees , 2001, Discret. Appl. Math..

[35]  C. Pandu Rangan,et al.  Tree 3-Spanners on Interval, Permutation and Regular Bipartite Graphs , 1996, Inf. Process. Lett..

[36]  Fred S. Annexstein,et al.  Independent Spanning Trees with Small Stretch Factors , 1996 .

[37]  Pierluigi Crescenzi,et al.  A compendium of NP optimization problems , 1994, WWW Spring 1994.

[38]  Anthony Mansfield,et al.  Determining the thickness of graphs is NP-hard , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[39]  Arnold L. Rosenberg,et al.  Group Action Graphs and Parallel Architectures , 1990, SIAM J. Comput..

[40]  Qing Zhu,et al.  A source-based algorithm for delay-constrained minimum-cost multicasting , 1995, Proceedings of INFOCOM'95.

[41]  Arthur M. Farley,et al.  Self-Repairing Networks , 1993, Parallel Process. Lett..

[42]  Paul Chew,et al.  There is a planar graph almost as good as the complete graph , 1986, SCG '86.

[43]  Bruce M. Maggs,et al.  On the fault tolerance of some popular bounded-degree networks , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[44]  D. Handke Independent Tree Spanners , 1998, WG.

[45]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[46]  Lawrence Wargo A characterization of α-outerplanar graphs , 1996, J. Graph Theory.

[47]  Alon Itai,et al.  The complexity of finding maximum disjoint paths with length constraints , 1982, Networks.

[48]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[49]  Alon Itai,et al.  Three tree-paths , 1989, J. Graph Theory.

[50]  Frank Harary,et al.  Graph Theory , 2016 .

[51]  Marek Karpinski,et al.  New Approximation Algorithms for the Steiner Tree Problems , 1997, J. Comb. Optim..

[52]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[53]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[54]  George N. Rouskas,et al.  Multicast Routing with End-to-End Delay and Delay Variation Constraints , 1997, IEEE J. Sel. Areas Commun..

[55]  Dana S. Richards,et al.  Degree-Constrained Pyramid Spanners , 1995, J. Parallel Distributed Comput..

[56]  Alon Itai,et al.  The Multi-Tree Approach to Reliability in Distributed Networks , 1988, Inf. Comput..

[57]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[58]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[59]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[60]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[61]  Dagmar Handke,et al.  NP-Completeness Results for Minimum Planar Spanners , 1998, Discret. Math. Theor. Comput. Sci..

[62]  Maciej M. Syslo,et al.  Characterizations of outerplanar graphs , 1979, Discret. Math..

[63]  J. Adrian Bondy Trigraphs , 1989, Discret. Math..

[64]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[65]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[66]  Marshall W. Bern,et al.  The Steiner Problem with Edge Lengths 1 and 2 , 1989, Inf. Process. Lett..

[67]  Leizhen Cai,et al.  NP-Completeness of Minimum Spanner Problems , 1994, Discret. Appl. Math..

[68]  Eli Upfal,et al.  A tradeoff between space and efficiency for routing tables , 1988, STOC '88.

[69]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[70]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[71]  W. Cunningham Decomposition of Directed Graphs , 1982 .

[72]  Arnold L. Rosenberg,et al.  Cycles in Networks , 1991 .

[73]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[74]  Arthur L. Liestman,et al.  Additive graph spanners , 1993, Networks.

[75]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory, Ser. B.

[76]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[77]  A. Dress,et al.  Reconstructing the shape of a tree from observed dissimilarity data , 1986 .

[78]  Andreas Brandstädt,et al.  Graphen und Algorithmen , 1994, Leitfäden und Monographien der Informatik.

[79]  Guy Kortsarz On the Hardness of Approximating Spanners , 2001, Algorithmica.

[80]  David Peleg,et al.  An optimal synchronizer for the hypercube , 1987, PODC '87.

[81]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[82]  Bruno Courcelle,et al.  The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.

[83]  Leizhen Cai,et al.  Spanners in graphs of bounded degree , 1994, Networks.

[84]  Guy Kortsarz,et al.  Generating low-degree 2-spanners , 1994, SODA '94.

[85]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[86]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[87]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[88]  Ioannis E. Papoutsakis,et al.  Two structure theorems on tree spanners , 1999 .

[89]  John P. Hayes,et al.  A Graph Model for Fault-Tolerant Computing Systems , 1976, IEEE Transactions on Computers.

[90]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[91]  L. Cai Tree spanners: spanning trees that approximate distances , 1992 .

[92]  Sándor P. Fekete,et al.  Tree spanners in planar graphs , 2001, Discret. Appl. Math..

[93]  Guy Kortsarz,et al.  Generating Sparse 2-Spanners , 1992, J. Algorithms.

[94]  Leizhen Cai,et al.  Tree Spanners , 1995, SIAM J. Discret. Math..

[95]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[96]  Dagmar Handke,et al.  Survivable Networks with Bounded Delay , 1998 .

[97]  S. S. Yau,et al.  Distance matrix of a graph and its realizability , 1965 .