A syntactical analysis of non-size-increasing polynomial time computation

A purely syntactical proof is given that all functions definable in a certain affine linear typed /spl lambda/-calculus with iteration in all types are polynomial time computable. The proof also gives explicit polynomial bounds that can easily be calculated.

[1]  Daniel Leivant,et al.  Lambda Calculus Characterizations of Poly-Time , 1993, Fundam. Informaticae.

[2]  D. Leivant Ramified Recurrence and Computational Complexity I: Word Recurrence and Poly-time , 1995 .

[3]  Neil D. Jones The expressive power of higher-order types or, life without CONS , 2001, J. Funct. Program..

[4]  Daniel Leivant Applicative Control and Computational Complexity , 1999, CSL.

[5]  Harold Simmons,et al.  The realm of primitive recursion , 1988, Arch. Math. Log..

[6]  Martin Hofmann,et al.  Linear types and non-size-increasing polynomial time computation , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[7]  Helmut Schwichtenberg,et al.  Higher type recursion, ramification and polynomial time , 2000, Ann. Pure Appl. Log..

[8]  M. Hofmann A Type System for Bounded Space and Functional In-Place Update , 2000, Nord. J. Comput..

[9]  Neil D. Jones,et al.  LOGSPACE and PTIME Characterized by Programming Languages , 1999, Theor. Comput. Sci..

[10]  Daniel Leivant,et al.  A foundational delineation of computational feasibility , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.