eScience for molecular-scale simulations and the eMinerals project

We review the work carried out within the eMinerals project to develop eScience solutions that facilitate a new generation of molecular-scale simulation work. Technological developments include integration of compute and data systems, developing of collaborative frameworks and new researcher-friendly tools for grid job submission, XML data representation, information delivery, metadata harvesting and metadata management. A number of diverse science applications will illustrate how these tools are being used for large parameter-sweep studies, an emerging type of study for which the integration of computing, data and collaboration is essential.

[1]  M. Calleja,et al.  Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6] , 2008, Science.

[2]  Martin T. Dove,et al.  CamGrid: Experiences in constructing a university-wide, Condor-based grid at the University of Cambridge , 2008 .

[3]  Andrew M. Walker,et al.  Job submission to grid computing environments , 2008, Concurr. Comput. Pract. Exp..

[4]  Kerstin Kleese van Dam,et al.  Usable grid infrastructures: practical experiences from the eMinerals project , 2007 .

[5]  Martin T. Dove,et al.  An interatomic potential model for carbonates allowing for polarization effects , 2003 .

[6]  Kerstin Kleese van Dam,et al.  Anatomy of a grid-enabled molecular simulation study: the compressibility of amorphous silica , 2006 .

[7]  Qun Hui,et al.  RMCProfile: reverse Monte Carlo for polycrystalline materials , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[8]  Kerstin Kleese van Dam,et al.  Metadata management and Grid computing within the eMinerals project , 2007 .

[9]  Martin T. Dove,et al.  DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism , 2006 .

[10]  John P. Brodholt,et al.  Leveraging HTC for UK eScience with very large Condor pools: demand for transforming untapped power into results , 2004 .

[11]  Martin T. Dove,et al.  Electrostatic versus polarization effects in the adsorption of aromatic molecules of varied polarity on an insulating hydrophobic surface , 2008 .

[12]  Martin T. Dove,et al.  Neutron powder diffraction study of the orientational order–disorder phase transition in calcite, CaCO3 , 2005 .

[13]  Martin T. Dove,et al.  Local structure in Ag3[Co(CN)6]: colossal thermal expansion, rigid unit modes and argentophilic interactions , 2008, 0802.4385.

[14]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[15]  Martin T. Dove,et al.  Radiation damage effects and percolation theory , 2004 .

[16]  T. O. H. White,et al.  Molecular dynamics in a grid computing environment: experiences using DL_POLY_3 within the eMinerals escience project , 2006 .

[17]  Martin T. Dove,et al.  The compressibility and high pressure structure of diopside from first principles simulation , 2008 .

[18]  T O H White,et al.  Integrating computing, data and collaboration grids: the RMCS tool , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  R. P. Tyer,et al.  A lightweight, scriptable, web-based frontend to the SRB , 2006 .

[20]  A. R. Price,et al.  Effects of atmospheric dynamics and ocean resolution on bi-stability of the thermohaline circulation examined using the Grid ENabled Integrated Earth system modelling (GENIE) framework , 2007, Climate Dynamics.

[21]  Martin T. Dove,et al.  How the nature of the chemical bond governs resistance to amorphization by radiation damage , 2005 .

[22]  Martin T. Dove,et al.  Origin of the colossal positive and negative thermal expansion in Ag3[Co(CN)6]: an ab initio density functional theory study , 2008, 0803.0480.

[23]  Martin T. Dove,et al.  Radiation damage in the bulk and at the surface , 2005 .

[24]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[25]  Martin T. Dove,et al.  Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6]. , 2008 .

[26]  T O H White,et al.  Lessons in scientific data interoperability: XML and the eMinerals project , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Gen-Tao Chiang,et al.  A grid enabled Monte Carlo hyperspectral synthetic image remote sensing model (GRID-MCHSIM) for coastal water quality algorithm , 2006, SPIE Remote Sensing.

[28]  Robert Allan,et al.  Science carried out as part of the NW-GRID project using the eMinerals infrastructure , 2007 .

[29]  Stephen A. Wells,et al.  The origin of the compressibility anomaly in amorphous silica: a molecular dynamics study , 2007 .

[30]  Peter Murray-Rust,et al.  Application and uses of CML within the eMinerals project , 2006 .

[31]  Emilio Artacho,et al.  Intrinsic point defects and volume swelling in ZrSiO4 under irradiation , 2004 .

[32]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[33]  M. Calleja,et al.  Collaborative grid infrastructure for molecular simulations: The eMinerals minigrid as a prototype integrated compute and data grid , 2005 .

[34]  T. O. H. White,et al.  Using eScience to calibrate our tools: parameterisation of quantum mechanical calculations with grid technologies , 2006 .

[35]  Martin T. Dove,et al.  Atomistic simulations of resistance to amorphization by radiation damage , 2006 .

[36]  Jamie Kettleborough,et al.  Data access and analysis with distributed federated data servers in climateprediction.net , 2006 .

[37]  T O H White,et al.  New tools to support collaboration and virtual organizations , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  Peter V. Coveney,et al.  The application hosting environment: Lightweight middleware for grid-based computational science , 2007, Comput. Phys. Commun..