Sparse PCA: A New Scalable Estimator Based On Integer Programming
暂无分享,去创建一个
[1] Steve R. Gunn,et al. Result Analysis of the NIPS 2003 Feature Selection Challenge , 2004, NIPS.
[2] Marc Teboulle,et al. Conditional Gradient Algorithmsfor Rank-One Matrix Approximations with a Sparsity Constraint , 2011, SIAM Rev..
[3] Weijun Xie,et al. Exact and Approximation Algorithms for Sparse PCA , 2020, ArXiv.
[4] Xiao-Tong Yuan,et al. Truncated power method for sparse eigenvalue problems , 2011, J. Mach. Learn. Res..
[5] Hussein Hazimeh,et al. Fast Best Subset Selection: Coordinate Descent and Local Combinatorial Optimization Algorithms , 2018, Oper. Res..
[6] Dimitris Bertsimas,et al. Solving Large-Scale Sparse PCA to Certifiable (Near) Optimality , 2020, J. Mach. Learn. Res..
[7] Jianqing Fan,et al. When is best subset selection the "best"? , 2020 .
[8] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[9] Fuzhen Zhang. The Schur complement and its applications , 2005 .
[10] Alexandre d'Aspremont,et al. Optimal Solutions for Sparse Principal Component Analysis , 2007, J. Mach. Learn. Res..
[11] Sinan Gürel,et al. A strong conic quadratic reformulation for machine-job assignment with controllable processing times , 2009, Oper. Res. Lett..
[12] Rahul Mazumder,et al. Archetypal Analysis for Sparse Nonnegative Matrix Factorization: Robustness Under Misspecification , 2021, ArXiv.
[13] Roman Vershynin,et al. High-Dimensional Probability , 2018 .
[14] Sung Min Park,et al. Sparse PCA from Sparse Linear Regression , 2018, NeurIPS.
[15] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[16] Michael I. Jordan,et al. A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..
[17] Ignacio E. Grossmann,et al. An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1987, Math. Program..
[18] B. Nadler,et al. DO SEMIDEFINITE RELAXATIONS SOLVE SPARSE PCA UP TO THE INFORMATION LIMIT , 2013, 1306.3690.
[19] I. Johnstone,et al. On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.
[20] Dimitris Bertsimas,et al. Certifiably optimal sparse principal component analysis , 2019, Mathematical Programming Computation.
[21] M. Rudelson,et al. Hanson-Wright inequality and sub-gaussian concentration , 2013 .
[22] Claudio Gentile,et al. Perspective cuts for a class of convex 0–1 mixed integer programs , 2006, Math. Program..
[23] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[24] P. Wedin. Perturbation bounds in connection with singular value decomposition , 1972 .
[25] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[26] Jianqing Fan,et al. High-Dimensional Statistics , 2014 .
[27] Rahul Mazumder,et al. Sparse Regression at Scale: Branch-and-Bound rooted in First-Order Optimization , 2020, ArXiv.
[28] Trevor Hastie,et al. Statistical Learning with Sparsity: The Lasso and Generalizations , 2015 .
[29] Quentin Berthet,et al. Statistical and computational trade-offs in estimation of sparse principal components , 2014, 1408.5369.
[30] Peter Richt'arik,et al. Alternating maximization: unifying framework for 8 sparse PCA formulations and efficient parallel codes , 2012, Optimization and Engineering.
[31] Oktay Günlük,et al. Perspective reformulations of mixed integer nonlinear programs with indicator variables , 2010, Math. Program..
[32] Shai Avidan,et al. Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms , 2005, NIPS.
[33] D. Paul. ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .
[34] I. Jolliffe,et al. A Modified Principal Component Technique Based on the LASSO , 2003 .
[35] Bart P. G. Van Parys,et al. Sparse high-dimensional regression: Exact scalable algorithms and phase transitions , 2017, The Annals of Statistics.
[36] H. Hotelling. Analysis of a complex of statistical variables into principal components. , 1933 .
[37] Santanu S. Dey,et al. A convex integer programming approach for optimal sparse PCA , 2018 .
[38] O. Papaspiliopoulos. High-Dimensional Probability: An Introduction with Applications in Data Science , 2020 .
[39] YuBin,et al. Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$ -Balls , 2011 .
[40] R. Tibshirani,et al. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.
[41] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[42] M. Wainwright,et al. High-dimensional analysis of semidefinite relaxations for sparse principal components , 2008, 2008 IEEE International Symposium on Information Theory.
[43] Vincent Q. Vu,et al. Sparsistency and agnostic inference in sparse PCA , 2014, 1401.6978.
[44] D. Bertsimas,et al. Best Subset Selection via a Modern Optimization Lens , 2015, 1507.03133.
[45] P. Rigollet,et al. Optimal detection of sparse principal components in high dimension , 2012, 1202.5070.
[46] Tengyao Wang,et al. Sparse principal component analysis via axis‐aligned random projections , 2017, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[47] Harrison H. Zhou,et al. OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION , 2012, 1302.3030.
[48] Andrea Montanari,et al. Sparse PCA via Covariance Thresholding , 2013, J. Mach. Learn. Res..