Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression

Based on the theory of nonlocal continuum mechanics, a multiple shell model is developed for the axial buckling of multiwalled carbon nanotubes under axial compression. The effects of small length scale are incorporated in this model. In particular, an explicit expression is derived for the axial buckling strain for a double-walled carbon nanotube. On the basis of this expression, the influence of the small length scale on the axial buckling strain is discussed. As a result, the effect of small length scale on the axial buckling strain is related to the buckling mode and the length-to-radial ratio.

[1]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[2]  J. Lu,et al.  Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[3]  A. Mioduchowski,et al.  VIBRATION OF AN EMBEDDED MULTIWALL CARBON NANOTUBE , 2003 .

[4]  Marvin L. Cohen,et al.  Nanotubes, nanoscience, and nanotechnology , 2001 .

[5]  A. Maiti Mechanical deformation in carbon nanotubes – bent tubes vs tubes pushed by atomically sharp tips , 2000 .

[6]  L. Sudak,et al.  Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics , 2003 .

[7]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[8]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[9]  E. J. Mele,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1997 .

[10]  A. Mioduchowski,et al.  Axially compressed buckling of pressured multiwall carbon nanotubes , 2003 .

[11]  H. Wagner,et al.  Buckling and Collapse of Embedded Carbon Nanotubes , 1998 .

[12]  Sanjay Govindjee,et al.  On the use of continuum mechanics to estimate the properties of nanotubes , 1999 .

[13]  C. Q. Ru,et al.  Degraded axial buckling strain of multiwalled carbon nanotubes due to interlayer slips , 2001 .

[14]  A. C. Eringen,et al.  Nonlocal polar elastic continua , 1972 .

[15]  John Peddieson,et al.  Application of nonlocal continuum models to nanotechnology , 2003 .

[16]  C. Q. Ru,et al.  Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium , 2001 .

[17]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[18]  Huajian Gao,et al.  Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials , 2002 .

[19]  Mitani,et al.  Stiffness of single-walled carbon nanotubes under large strain , 2000, Physical review letters.

[20]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[21]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[22]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[23]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[24]  Amitesh Maiti,et al.  Electronic transport through carbon nanotubes: effects of structural deformation and tube chirality. , 2002, Physical review letters.

[25]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.