On weighted zero-sum sequences

Let G be a finite additive abelian group with exponent exp(G)=n>1 and let A be a nonempty subset of {1,...,n-1}. In this paper, we investigate the smallest positive integer m, denoted by s"A(G), such that any sequence {c"i}"i"="1^m with terms from G has a length n=exp(G) subsequence {c"i"""j}"j"="1^n for which there are a"1,...,a"[email protected]?A such that @?"j"="1^na"ic"i"""j=0. When G is a p-group, A contains no multiples of p and any two distinct elements of A are incongruent mod p, we show that s"A(G)= +~. Combined with a lower bound of exp(G)[email protected]?"i"="1^[email protected]?log"2n"[email protected]?, where [email protected]?Z"n"""[email protected][email protected]?Z"n"""r with 1

[1]  Weidong Gao,et al.  A Combinatorial Problem on Finite Abelian Groups , 1996 .

[2]  Zhi-Wei Sun On sums of binomial coefficients and their applications , 2008, Discret. Math..

[3]  Zhigang Li,et al.  Some Davenport Constants with Weights and Adhikari and Rath's Conjecture , 2008, Ars Comb..

[4]  John E. Olson,et al.  A combinatorial problem on finite Abelian groups, I , 1969 .

[5]  Zhi-Wei Sun,et al.  Zero-sum problems for abelian p-groups and covers of the integers by residue classes , 2003, math/0305369.

[6]  Noga Alon Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.

[7]  R Thangadurai A variant of Davenport’s constant , 2007 .

[8]  Oscar Ordaz,et al.  A weighted generalization of two theorems of Gao , 2009, 0903.2810.

[9]  Yong-Gao Chen,et al.  Davenport constant with weights and some related questions, II , 2008, J. Comb. Theory, Ser. A.

[10]  Pingzhi Yuan,et al.  Davenport constant with weights , 2010, Eur. J. Comb..

[11]  Richard M. Wilson,et al.  On $t$-designs , 1975 .

[12]  Peter Frankl,et al.  Set Systems with Restricted Intersections modulo Prime Powers , 2001, J. Comb. Theory, Ser. A.

[13]  B. M. Fulk MATH , 1992 .

[14]  A. Ziv,et al.  Theorem in the Additive Number Theory , 2022 .

[15]  Christian Reiher,et al.  On Kemnitz’ conjecture concerning lattice-points in the plane , 2007 .

[16]  Alfred Geroldinger,et al.  Non-Unique Factorizations : Algebraic, Combinatorial and Analytic Theory , 2006 .

[17]  J. Holliday Sun , 1995 .

[18]  Noga Alon,et al.  Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems , 1991, J. Comb. Theory, Ser. A.

[19]  Melvyn B. Nathanson,et al.  Additive Number Theory: Inverse Problems and the Geometry of Sumsets , 1996 .

[20]  Weidong Gao,et al.  Zero-sum problems in finite abelian groups: A survey , 2006 .

[21]  Zhi-Wei Sun Unification of zero-sum problems, subset sums and covers of ℤ , 2003 .

[22]  S. Adhikari,et al.  Some zero-sum constants with weights , 2008 .

[23]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[24]  Heiko Harborth,et al.  Ein Extremalproblem für Gitterpunkte. , 1973 .

[25]  David J. Grynkiewicz,et al.  A Weighted Erdős-Ginzburg-Ziv Theorem , 2006, Comb..

[27]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[28]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[29]  Francesco Pappalardi,et al.  Contributions to zero-sum problems , 2006, Discret. Math..