Optimal error estimates of mixed FEMs for second order hyperbolic integro-differential equations with minimal smoothness on initial data
暂无分享,去创建一个
[1] Vassilios A. Dougalis,et al. The Effect of Quadrature Errors on Finite Element Approximations for Second Order Hyperbolic Equations , 1976 .
[2] Yanping Lin,et al. L 1 -ERROR ESTIMATES AND SUPERCONVERGENCE IN MAXIMUM NORM OF MIXED FINITE ELEMENT METHODS FOR NONFICKIAN FLOWS IN POROUS MEDIA , 2005 .
[3] A. K. Pani,et al. The effect of spatial quadrature on finite element galerkin approximations to hyperbolic integro-differential equations , 1998 .
[4] V. Thomée,et al. Error estimates for some mixed finite element methods for parabolic type problems , 1981 .
[5] W. H. Kirk. And and Or , 1921 .
[6] T. Dupont,et al. A Priori Estimates for Mixed Finite Element Approximations of Second Order Hyperbolic Equations with , 1996 .
[7] Richard E. Ewing,et al. Sharp L2-Error Estimates and Superconvergence of Mixed Finite Element Methods for Non-Fickian Flows in Porous Media , 2002, SIAM J. Numer. Anal..
[8] T. Dupont. $L^2 $-Estimates for Galerkin Methods for Second Order Hyperbolic Equations , 1973 .
[9] M. Wheeler,et al. Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-Centered Finite Differences , 1997 .
[10] G. A. Baker. Error Estimates for Finite Element Methods for Second Order Hyperbolic Equations , 1976 .
[11] Richard E. Ewing,et al. Mixed Finite Element Approximations of Parabolic Integro-Differential Equations with Nonsmooth Initial Data , 2009, SIAM J. Numer. Anal..
[12] Mary F. Wheeler,et al. A Priori Error Estimates for Mixed Finite Element Approximations of the Acoustic Wave Equation , 2002, SIAM J. Numer. Anal..
[13] Eric T. Chung,et al. Optimal Discontinuous Galerkin Methods for the Acoustic Wave Equation in Higher Dimensions , 2009, SIAM J. Numer. Anal..
[14] Patrick Joly,et al. An Analysis of New Mixed Finite Elements for the Approximation of Wave Propagation Problems , 2000, SIAM J. Numer. Anal..
[15] R. K. Sinha. Finite element approximations with quadrature for second‐order hyperbolic equations , 2002 .
[16] Galerkin methods and L2-error estimates for hyperbolic integro-differential equations , 1989 .
[17] Zhangxin Chen,et al. Expanded mixed finite element methods for linear second-order elliptic problems, I , 1998 .
[18] Sangita Yadav,et al. Optimal Error Estimates of Two Mixed Finite Element Methods for Parabolic Integro-Differential Equations with Nonsmooth Initial Data , 2013, J. Sci. Comput..
[19] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[20] Michael Renardy,et al. Mathematical problems in viscoelasticity , 1987 .
[21] Vidar Thomée,et al. Numerical methods for hyperbolic and parabolic integro-differential equations , 1992 .
[22] T. Geveci. On the application of mixed finite element methods to the wave equations , 1988 .
[23] J. Rauch. ON CONVERGENCE OF THE FINITE ELEMENT METHOD FOR THE WAVE EQUATION , 1985 .
[24] Carol S. Woodward,et al. Analysis of Expanded Mixed Finite Element Methods for a Nonlinear Parabolic Equation Modeling Flow into Variably Saturated Porous Media , 2000, SIAM J. Numer. Anal..