A Global Optimization Method for Solving Parametric Linear Systems Whose Input Data Are Rational Functions of Interval Parameters

An interval global optimization method combined with the Direct Method for solving parametric linear systems is used for computing a tight enclosure for the solution set of parametric linear system whose input data are non-linear functions of interval parameters. Revised affine arithmetic is used to handle the nonlinear dependencies. The Direct Method performs the monotonicity test to speed up the convergence of the global optimization. It is shown that the monotonicity test significantly increases the convergence of the global optimization method. Some illustrative examples are solved by the discussed method, and the results are compared to literature data produces by other methods.

[1]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[2]  E. R. Hansen,et al.  A Generalized Interval Arithmetic , 1975, Interval Mathematics.

[3]  Vladik Kreinovich,et al.  COMPUTING EXACT COMPONENTWISE BOUNDS ON SOLUTIONS OF LINEAR SYSTEMS WITH INTERVAL DATA IS NP-HARD∗ , 1995 .

[4]  Lubomir V. Kolev Solving Linear Systems Whose Elements Are Nonlinear Functions of Intervals , 2004, Numerical Algorithms.

[5]  Lubomir V. Kolev,et al.  A Method for Outer Interval Solution of Linear Parametric Systems , 2004, Reliab. Comput..

[6]  Arnold Neumaier,et al.  Linear Systems with Large Uncertainties, with Applications to Truss Structures , 2007, Reliab. Comput..

[7]  Tibor Csendes,et al.  On the selection of subdivision directions in interval branch-and-bound methods for global optimization , 1995, J. Glob. Optim..

[8]  Rob A. Rutenbar,et al.  Floating-point error analysis based on affine arithmetic , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[9]  S. Rump Verification methods for dense and sparse systems of equations , 1994 .

[10]  Frédéric Messine,et al.  Extentions of Affine Arithmetic: Application to Unconstrained Global Optimization , 2002, J. Univers. Comput. Sci..

[11]  Christian Jansson,et al.  Interval linear systems with symmetric matrices, skew-symmetric matrices and dependencies in the right hand side , 1991, Computing.

[12]  Tibor Csendes,et al.  A New Multisection Technique in Interval Methods for Global Optimization , 2000, Computing.

[13]  Christiaan J. J. Paredis,et al.  Why Are Intervals and Imprecision Important In Engineering Design , 2006 .

[14]  Boi Faltings,et al.  Combining multiple inclusion representations in numerical constraint propagation , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[15]  Lubomir V. Kolev,et al.  An Improved Interval Linearization for Solving Nonlinear Problems , 2004, Numerical Algorithms.

[17]  De Figueiredo,et al.  Self-validated numerical methods and applications , 1997 .

[18]  Iwona Skalna Evolutionary Optimization Method for Approximating the Solution Set Hull of Parametric Linear Systems , 2006, Numerical Methods and Applications.

[19]  A. Neumaier Interval methods for systems of equations , 1990 .

[20]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[21]  Evgenija D. Popova Solving Linear Systems Whose Input Data Are Rational Functions of Interval Parameters , 2006, Numerical Methods and Applications.

[22]  Iwona Skalna On Checking the Monotonicity of Parametric Interval Solution of Linear Structural Systems , 2007, PPAM.

[23]  Iwona Skalna,et al.  A Method for Outer Interval Solution of Systems of Linear Equations Depending Linearly on Interval Parameters , 2006, Reliab. Comput..

[24]  Dietmar Ratz,et al.  Automatische Ergebnisverifikation bei globalen Optimierungsproblemen , 1992 .

[25]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[26]  George F. Corliss,et al.  Formulation for Reliable Analysis of Structural Frames , 2007, Reliab. Comput..

[27]  Vladik Kreinovich,et al.  Interval Finite Element Methods: New Directions , 2006 .

[28]  Robert L. Mullen,et al.  Efficient interval methods for finite element solutions , 2002, Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications.

[29]  H. El-Owny Parametric Linear System of Equations, Whose Elements are Nonlinear Functions , 2006, 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006).

[30]  Shinya Miyajima,et al.  A dividing method utilizing the best multiplication in affine arithmetic , 2004, IEICE Electron. Express.

[31]  G. Marchuk,et al.  Numerical methods and applications , 1995 .

[32]  E. Hansen Global optimization using interval analysis — the multi-dimensional case , 1980 .