On the approximation of the unsteady Navier–Stokes equations by finite element projection methods

Abstract. This paper provides an analysis of a fractional-step projection method to compute incompressible viscous flows by means of finite element approximations. The analysis is based on the idea that the appropriate functional setting for projection methods must accommodate two different spaces for representing the velocity fields calculated respectively in the viscous and the incompressible half steps of the method. Such a theoretical distinction leads to a finite element projection method with a Poisson equation for the incremental pressure unknown and to a very practical implementation of the method with only the intermediate velocity appearing in the numerical algorithm. Error estimates in finite time are given. An extension of the method to a problem with unconventional boundary conditions is also considered to illustrate the flexibility of the proposed method.

[1]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[2]  S. Giuliani,et al.  Finite element solution of the unsteady Navier-Stokes equations by a fractional step method , 1982 .

[3]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[4]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[5]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[6]  Christine Bernardi,et al.  A Conforming Finite Element Method for the Time-Dependent Navier–Stokes Equations , 1985 .

[7]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[8]  L. Quartapelle,et al.  Numerical solution of the incompressible Navier-Stokes equations , 1993, International series of numerical mathematics.

[9]  R. Temam Navier-Stokes Equations , 1977 .

[10]  Jean-Luc Guermond,et al.  On Sensitive Vector Poisson and Stokes Problems , 1997 .

[11]  Vivette Girault,et al.  On the existence and regularity of the solution of Stokes problem in arbitrary dimension , 1991 .

[12]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[13]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[14]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[15]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[16]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[17]  T. Taylor,et al.  A Pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations , 1987 .

[18]  Alexandre Joel Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations* , 1989 .

[19]  Rudolph E. Langer,et al.  On Numerical Approximation , 1959 .

[20]  Rolf Rannacher,et al.  On the finite element approximation of the nonstationary Navier-Stokes problem , 1980 .

[21]  J. Lions,et al.  Problèmes aux limites non homogènes (VI) , 1963 .

[22]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[23]  Jean-Luc Guermond,et al.  Some implementations of projection methods for Navier-Stokes equations , 1996 .

[24]  Jean-Luc Guermond,et al.  Calculation of Incompressible Viscous Flows by an Unconditionally Stable Projection FEM , 1997 .

[25]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[26]  R. Rannacher On chorin's projection method for the incompressible navier-stokes equations , 1992 .

[27]  Lamberto Cattabriga,et al.  Su un problema al contorno relativo al sistema di equazioni di Stokes , 1961 .

[28]  Jean-Luc Guermond SUR L'APPROXIMATION DES EQUATIONS DE NAVIER-STOKES PAR UNE METHODE DE PROJECTION , 1994 .