Reactive sintering of Ti-Al and Ti-Al-Nb consolidated elemental blocks for use as consumable electrodes in vacuum arc melting

[1]  Jinsan Wang,et al.  A new intermetallic compound in TiAl+Nb composition area of the Ti–Al–Nb ternary system , 2005 .

[2]  L. Singheiser,et al.  Oxidation behaviour of Ag-containing TiAl-based intermetallics , 2004 .

[3]  J. Lapin,et al.  Microstructure and creep properties of a cast intermetallic Ti-46Al-2W-0.5Si alloy for gas turbine applications , 2004 .

[4]  S. Pyo,et al.  Nucleation and growth of α phase in hot extruded Ti–46.6Al–2Mo–1.4Mn intermetallic alloy produced by hot extrusion of elemental powders , 2004 .

[5]  Y. Wu,et al.  The effect of yttrium on microstructure and dislocation behavior of elemental powder metallurgy processed TiAl-based intermetallics , 2004 .

[6]  G. Cao,et al.  Combination of mechanochemical activation and self-propagating behaviour for the synthesis of Ti aluminides , 2003 .

[7]  J. Lapin,et al.  Directional solidification of intermetallic Ti–46Al–2W–0.5Si alloy in alumina moulds , 2002 .

[8]  E. Gutmanas,et al.  In situ processing of dense Al2O3–Ti aluminide interpenetrating phase composites , 2002 .

[9]  F. Froes,et al.  High temperature mechanical properties of a submicrocrystalline Ti–47Al–3Cr alloy produced by mechanical alloying and hot isostatic pressing , 2000 .

[10]  R. Orrú,et al.  Mechanistic investigation of the field-activated combustion synthesis (FACS) of titanium aluminides , 1999 .

[11]  Z. A. Munir,et al.  The use of an electric field as a processing parameter in the combustion synthesis of ceramics and composites , 1996 .

[12]  Young-Won Kim,et al.  Gamma titanium aluminides , 1995 .

[13]  K. Ishihara,et al.  Near-net shape processing of TiAl intermetallic compounds via pseudoHIP-SHS route , 1995 .

[14]  D. P. Pope,et al.  High Temperature Aluminides and Intermetallics , 1993 .

[15]  A. Petric,et al.  Synthesis of Ti-Al Intermetallic Compounds by Combustion Synthesis , 1992 .