Quantifying Wind Turbine Wake Characteristics from Scanning Remote Sensor Data

AbstractBecause of the dense arrays at most wind farms, the region of disturbed flow downstream of an individual turbine leads to reduced power production and increased structural loading for its leeward counterparts. Currently, wind farm wake modeling, and hence turbine layout optimization, suffers from an unacceptable degree of uncertainty, largely because of a lack of adequate experimental data for model validation. Accordingly, nearly 100 h of wake measurements were collected with long-range Doppler lidar at the National Wind Technology Center at the National Renewable Energy Laboratory in the Turbine Wake and Inflow Characterization Study (TWICS). This study presents quantitative procedures for determining critical parameters from this extensive dataset—such as the velocity deficit, the size of the wake boundary, and the location of the wake centerline—and categorizes the results by ambient wind speed, turbulence, and atmospheric stability. Despite specific reference to lidar, the methodology is gene...

[1]  Christian J. Grund,et al.  High-Resolution Doppler Lidar for Boundary Layer and Cloud Research , 2001 .

[2]  D. Kleinbaum,et al.  Applied Regression Analysis and Other Multivariate Methods , 1978 .

[3]  G. Larsen,et al.  Light detection and ranging measurements of wake dynamics part I: one‐dimensional scanning , 2010 .

[4]  Robert M. Banta,et al.  Shear-Flow Instability in the Stable Nocturnal Boundary Layer as Observed by Doppler Lidar during CASES-99 , 2003 .

[5]  F. Porté-Agel,et al.  Field Measurements of Wind Turbine Wakes with Lidars , 2013 .

[6]  Mohd Talib Latif,et al.  Fitting a mixture of von Mises distributions in order to model data on wind direction in Peninsular Malaysia , 2013 .

[7]  Robert M. Banta,et al.  Doppler Lidar Estimation of Mixing Height Using Turbulence, Shear, and Aerosol Profiles , 2009 .

[8]  Julio Hernández,et al.  Experimental validation of the UPM computer code to calculate wind turbine wakes and comparison with other models , 1988 .

[9]  Johan Meyers,et al.  Optimal turbine spacing in fully developed wind farm boundary layers , 2012 .

[10]  Stefan Emeis,et al.  Wind Energy Meteorology , 2013 .

[11]  W. R. Hargraves,et al.  Methods for Estimating Wind Speed Frequency Distributions. , 1978 .

[12]  P. H. Gudiksen,et al.  Implications of Small-Scale Flow Features to Modeling Dispersion over Complex Terrain. , 1996 .

[13]  B. Lange,et al.  Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar , 2006 .

[14]  J. Michalakes,et al.  A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics , 2012 .

[15]  John L. Schroeder,et al.  Documenting Wind Speed and Power Deficits behind a Utility-Scale Wind Turbine , 2013 .

[16]  J. Lundquist,et al.  Nocturnal Low-Level Jet Characteristics Over Kansas During Cases-99 , 2002 .

[17]  Fernando Porté-Agel,et al.  Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms , 2011 .

[18]  Stel Nathan Walker,et al.  Wake measurements behind a large horizontal axis wind turbine generator , 1984 .

[19]  W. Johnson,et al.  Design specifications for the development of the initial validation software (Version 3.0) for processing of NWTC 80-Meter meteorological tower data , 2000 .

[20]  Leo E. Jensen,et al.  Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms , 2010 .

[21]  B. J. Rye,et al.  Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound , 1993, IEEE Trans. Geosci. Remote. Sens..

[22]  Julie K. Lundquist,et al.  Performance of a Wind-Profiling Lidar in the Region of Wind Turbine Rotor Disks , 2010 .

[23]  John L. Schroeder,et al.  Measuring a Utility-Scale Turbine Wake Using the TTUKa Mobile Research Radars , 2012 .

[24]  J. C. Barnard,et al.  Observations of wind turbine wakes and surface roughness effects on wind flow variability , 1990 .

[25]  Robert M. Banta,et al.  Doppler Lidar–Based Wind-Profile Measurement System for Offshore Wind-Energy and Other Marine Boundary Layer Applications , 2012 .

[26]  Harry D. Kambezidis,et al.  Wake measurements behind a horizontal-axis 50 kW wind turbine , 1990 .

[27]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[28]  Marko Princevac,et al.  Retrieval of Microscale Wind and Temperature Fields from Single- and Dual-Doppler Lidar Data , 2005 .

[29]  D. Levinson,et al.  Influence of canyon-induced flows on flow and dispersion over adjacent plains , 1995 .

[30]  Morten Nielsen,et al.  Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm , 2007 .

[31]  Julie K. Lundquist,et al.  Data Clustering Reveals Climate Impacts on Local Wind Phenomena , 2012 .

[32]  Jimy Dudhia,et al.  Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model , 2012 .

[33]  N. M. Nielsen,et al.  Offshore Wind Turbine Wakes Measured by Sodar , 2003 .

[34]  J. Sørensen,et al.  Wind turbine wake aerodynamics , 2003 .

[35]  Gunner Chr. Larsen,et al.  Offshore fatigue design turbulence , 2001 .

[36]  D. N. Asimakopoulos,et al.  A field study of the wake behind a 2 MW wind turbine , 1988 .

[37]  Panagiotis Papageorgas,et al.  An experimental study of the near-wake structure of a wind turbine operating over complex terrain , 1995 .

[38]  M. Magnusson,et al.  Near-wake behaviour of wind turbines , 1999 .

[39]  Rebecca J. Barthelmie,et al.  Analytical modelling of wind speed deficit in large offshore wind farms , 2006 .

[40]  M. Kühn,et al.  Wake Measurements of a Multi-MW Wind Turbine with Coherent Long-Range Pulsed Doppler Wind Lidar , 2010 .

[41]  Michael J. Gourlay,et al.  Equilibrium similarity, effects of initial conditions and local Reynolds number on the axisymmetric wake , 2003 .

[42]  R. Frehlich,et al.  Measurements of Boundary Layer Profiles in an Urban Environment , 2006 .

[43]  Leo E. Jensen,et al.  The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm , 2010 .

[44]  Christophe Leclerc,et al.  A Viscous Three-Dimensional Differential/Actuator-Disk Method for the Aerodynamic Analysis of Wind Farms , 2002 .

[45]  P. Clive,et al.  Direct measurement of wind turbine wakes using remote sensing , 2011 .

[46]  T. W. Horst,et al.  Crop Wind Energy Experiment (CWEX): Observations of Surface-Layer, Boundary Layer, and Mesoscale Interactions with a Wind Farm , 2013 .

[47]  Arne V. Johansson,et al.  Pressure fluctuation in high-Reynolds-number turbulent boundary layer: results from experiments and DNS , 2012 .

[48]  Neil Kelley,et al.  Lidar Investigation of Atmosphere Effect on a Wind Turbine Wake , 2013 .