Chaotic behavior of cavity solitons induced by time delay feedback.

We investigate spatiotemporal dynamics of cavity solitons in a broad area vertical-cavity surface-emitting laser with saturable absorption subject to time-delayed optical feedback. We show that the inclusion of feedback leads to a period doubling route to chaos of spatially localized light structures.

[1]  Vladimirov,et al.  Effect of frequency detunings and finite relaxation rates on laser localized structures , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Y. Chung,et al.  Spectral characteristics of vertical-cavity surface-emitting lasers with external optical feedback , 1991, IEEE Photonics Technology Letters.

[3]  R. Lefever,et al.  Localized structures and localized patterns in optical bistability. , 1994, Physical review letters.

[4]  H. Thienpont,et al.  Investigation of polarization properties of VCSELs subject to optical feedback from an extremely short external cavity-part I: theoretical analysis , 2006 .

[5]  Pascal Besnard,et al.  Switching between polarized modes of a vertical-cavity surface-emitting laser by isotropic optical feedback , 1999 .

[6]  L. Lugiato,et al.  Cavity solitons as pixels in semiconductor microcavities , 2002, Nature.

[7]  M. Bache,et al.  Cavity soliton laser based on VCSEL with saturable absorber , 2005 .

[8]  P. Mandel,et al.  REVIEW ARTICLE: Transverse dynamics in cavity nonlinear optics (2000 2003) , 2004 .

[9]  I. V. Barashenkov,et al.  Time-periodic solitons in a damped-driven nonlinear Schrödinger equation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  S. Residori,et al.  Solitary localized structures in a liquid crystal light-valve experiment , 2009 .

[11]  Kazuhiro Nozaki,et al.  Low-dimensional chaos in a driven damped nonlinear Schro¨dinger equation , 1986 .

[12]  Germany,et al.  Patterns and localized structures in bistable semiconductor resonators , 2000, nlin/0001055.

[13]  H. Thienpont,et al.  Optical Feedback in Vertical-Cavity Surface-Emitting Lasers , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Sylvain Barbay,et al.  Fast manipulation of laser localized structures in a monolithic vertical cavity with saturable absorber , 2010 .

[15]  Krassimir Panajotov,et al.  Spontaneous motion of cavity solitons in vertical-cavity lasers subject to optical injection and to delayed feedback , 2010 .

[16]  S. Residori,et al.  Spatiotemporal chaotic localized state in liquid crystal light valve experiments with optical feedback. , 2013, Physical review letters.

[17]  L. Lugiato Transverse nonlinear optics: Introduction and review , 1994 .

[18]  Hugo Thienpont,et al.  Experimental observation of localized structures in medium size VCSELs. , 2014, Optics express.

[19]  Krassimir Panajotov,et al.  Delay feedback induces a spontaneous motion of two-dimensional cavity solitons in driven semiconductor microcavities , 2012 .

[20]  Pere Colet,et al.  Dynamical properties of two-dimensional Kerr cavity solitons , 2002 .

[21]  Tommaso Maggipinto,et al.  Self-pulsing localized structures in a laser with saturable absorber , 2010 .

[22]  William J. Firth,et al.  Pattern formation in a passive Kerr cavity , 1994 .

[23]  Nikolay N. Rosanov,et al.  I Transverse Patternsin Wide-Aperture Nonlinear Optical Systems , 1996 .

[24]  S V Gurevich,et al.  Instabilities of localized structures in dissipative systems with delayed feedback. , 2013, Physical review letters.

[25]  L. Gelens,et al.  Dynamics of one-dimensional Kerr cavity solitons. , 2013, Optics express.

[26]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.

[27]  Lorenzo Spinelli,et al.  SPATIAL SOLITONS IN SEMICONDUCTOR MICROCAVITIES , 1998 .

[28]  Intrinsically localized chaos in discrete nonlinear extended systems , 1999, chao-dyn/9901030.

[29]  D. Lenstra,et al.  Coherence collapse in single-mode semiconductor lasers due to optical feedback , 1985, IEEE Journal of Quantum Electronics.

[30]  K. Panajotov,et al.  Delayed feedback control of self-mobile cavity solitons , 2013, 1307.0296.

[31]  P. Genevet,et al.  Cavity soliton laser based on mutually coupled semiconductor microresonators. , 2008, Physical review letters.

[32]  D. Turaev,et al.  Long-range interaction and synchronization of oscillating dissipative solitons. , 2012, Physical review letters.

[33]  Sylvain Barbay,et al.  Control of cavity solitons and dynamical states in a monolithic vertical cavity laser with saturable absorber , 2010 .

[34]  William J. Firth,et al.  Fundamentals and Applications of Spatial Dissipative Solitons in Photonic Devices , 2009 .

[35]  M Tlidi,et al.  Spontaneous motion of cavity solitons induced by a delayed feedback. , 2009, Physical review letters.

[36]  Hugo Thienpont,et al.  Linearly polarized bistable localized structure in medium-size vertical-cavity surface-emitting lasers , 2009 .

[37]  L. Lugiato,et al.  Cavity solitons in a driven VCSEL above threshold , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  Hugo Thienpont,et al.  Experimental evidence of coherence resonance in a time-delayed bistable system. , 2007, Physical review letters.

[39]  Jesper Mørk,et al.  Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis , 1988 .