Parallel simulations of three-dimensional cracks using the generalized finite element method

This paper presents a parallel generalized finite element method (GFEM) that uses customized enrichment functions for applications where limited a priori knowledge about the solution is available. The procedure involves the parallel solution of local boundary value problems using boundary conditions from a coarse global problem. The local solutions are in turn used to enrich the global solution space using the partition of unity methodology. The parallel computation of local solutions can be implemented using a single pair of scatter–gather communications. Several numerical experiments demonstrate the high parallel efficiency of these computations. For problems requiring non-uniform mesh refinement and enrichment, load unbalance is addressed by defining a larger number of small local problems than the number of parallel processors and by sorting and solving the local problems based on estimates of their workload. A simple and effective estimate of the largest number of processors where load balance among processors is maintained is also proposed. Several three-dimensional fracture mechanics problems aiming at investigating the accuracy and parallel performance of the proposed GFEM are analyzed.

[1]  I. Babuska,et al.  The generalized finite element method , 2001 .

[2]  C. Duarte,et al.  Analysis and applications of a generalized finite element method with global-local enrichment functions , 2008 .

[3]  Dae-Jin Kim,et al.  Analysis of three‐dimensional fracture mechanics problems: A two‐scale approach using coarse‐generalized FEM meshes , 2010 .

[4]  Gerd Heber,et al.  Three-dimensional, parallel, finite element simulation of fatigue crack growth in a spiral bevel pinion gear , 2005 .

[5]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[6]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[7]  Xiangmin Jiao,et al.  Generalized finite element method enrichment functions for curved singularities in 3D fracture mechanics problems , 2009 .

[8]  John F. Abel,et al.  Recursive spectral algorithms for automatic domain partitioning in parallel finite element analysis , 1995 .

[9]  Charbel Farhat,et al.  A simple and efficient automatic fem domain decomposer , 1988 .

[10]  Xiangmin Jiao,et al.  hp‐Generalized FEM and crack surface representation for non‐planar 3‐D cracks , 2009 .

[11]  Michael J. Quinn,et al.  Parallel programming in C with MPI and OpenMP , 2003 .

[12]  Barry Wilkinson,et al.  Parallel programming , 1998 .

[13]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[14]  Stéphane Bordas,et al.  XFEM AND MESH ADAPTATION: A MARRIAGE OF CONVENIENCE , 2008 .

[15]  Carlos J. S. Alves,et al.  Advances in meshfree techniques , 2007 .

[16]  Glaucio H. Paulino,et al.  EVALUATION OF AUTOMATIC DOMAIN PARTITIONING ALGORITHMS FOR PARALLEL FINITE ELEMENT ANALYSIS , 1997 .

[17]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[18]  Carlos Armando Duarte,et al.  Transient analysis of sharp thermal gradients using coarse finite element meshes , 2011 .

[19]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[20]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[21]  Yusheng Feng,et al.  hp adaptive strategy , 1992 .

[22]  I. Babuska,et al.  The partition of unity finite element method , 1996 .

[23]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[24]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[25]  Ivo Babuška,et al.  A Global-Local Approach for the Construction of Enrichment Functions for the Generalized FEM and Its Application to Three-Dimensional Cracks , 2007 .

[26]  J. Newman,et al.  ANALYSIS OF FINITE-THICKNESS FRACTURE SPECIMENS , 1977 .

[27]  John F. Abel,et al.  On the accuracy of some domain‐by‐domain algorithms for parallel processing of transient structural dynamics , 1989 .

[28]  S. Li,et al.  Symmetric weak-form integral equation method for three-dimensional fracture analysis , 1998 .

[29]  Dae-Jin Kim,et al.  Analysis of Interacting Cracks Using the Generalized Finite Element Method With Global-Local Enrichment Functions , 2008 .

[30]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[31]  Carlos Armando Duarte,et al.  Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients , 2009 .

[32]  J. Melenk The Partition of Unity MethodI , 1996 .

[33]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[34]  J. Tinsley Oden,et al.  An hp Adaptive Method Using Clouds C , 2006 .

[35]  Jaroslav Kruis,et al.  Solving laminated plates by domain decomposition , 2002 .

[36]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[37]  Hans Werner Meuer,et al.  Top500 Supercomputer Sites , 1997 .