Inducing or suppressing chaos in a double-well Duffing oscillator by time delay feedback

[1]  P. Holmes,et al.  A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  H. Walther,et al.  Existence of chaos in control systems with delayed feedback , 1983 .

[3]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[4]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[5]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[6]  Michael J. Chajes,et al.  STABILITY OF ACTIVE-TENDON STRUCTURAL CONTROL WITH TIME DELAY , 1993 .

[7]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[8]  John Argyris,et al.  Chaotic vibrations of a nonlinear viscoelastic beam , 1996 .

[9]  Sue Ann Campbell,et al.  Stability, Bifurcation, and Multistability in a System of Two Coupled Neurons with Multiple Time Delays , 2000, SIAM J. Appl. Math..

[10]  Xiaofeng Liao,et al.  Local stability, Hopf and resonant codimension-Two bifurcation in a harmonic oscillator with Two Time delays , 2001, Int. J. Bifurc. Chaos.

[11]  H. Hu,et al.  Dynamics of Controlled Mechanical Systems with Delayed Feedback , 2002 .

[12]  Paul Woafo,et al.  Active control with delay of vibration and chaos in a double-well Duffing oscillator , 2003 .

[13]  Jian Xu,et al.  Delay-Induced bifurcations in a nonautonomous System with Delayed Velocity Feedbacks , 2004, Int. J. Bifurc. Chaos.

[14]  Haiyan Hu,et al.  Global Dynamics of a Duffing oscillator with Delayed Displacement Feedback , 2004, Int. J. Bifurc. Chaos.

[15]  Paul Woafo,et al.  Active control with delay of catastrophic motion and horseshoes chaos in a single well Duffing oscillator , 2005 .