Isogeometric analysis of laminated composite plates based on a four-variable refined plate theory

In this paper, a simple and effective formulation based on isogeometric approach (IGA) and a four variable refined plate theory (RPT) is proposed to investigate the behavior of laminated composite plates. RPT model satisfies the traction-free boundary conditions at plate surfaces and describes the non-linear distribution of shear stresses without requiring shear correction factor (SCF). IGA utilizes basis functions, namely B-splines or non-uniform rational B-splines (NURBS), which reveals easily the smoothness of any arbitrary order. It hence handles easily the C1 requirement of the RPT model. Approximating the displacement field with four degrees of freedom per each node, the present method retains the computational efficiency while ensuring the reasonable accuracy in solution.

[1]  Hung Nguyen-Xuan,et al.  An Edge-Based Smoothed Discrete Shear Gap Method Using the C0-Type Higher-Order Shear Deformation Theory for Analysis of Laminated Composite Plates , 2015 .

[2]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[3]  Stéphane Bordas,et al.  Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory , 2014 .

[4]  Sébastien Mistou,et al.  Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity , 2003 .

[5]  M. A. McCarthy,et al.  Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method , 2008 .

[6]  J. N. Reddy,et al.  Analytical solutions of refined plate theories of cross-ply composite laminates , 1991 .

[7]  Hung Nguyen-Xuan,et al.  Isogeometric Analysis of Laminated Composite Plates Using the Higher-Order Shear Deformation Theory , 2015 .

[8]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[9]  Hemendra Arya,et al.  A zigzag model for laminated composite beams , 2002 .

[10]  Liviu Librescu,et al.  Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory. II - Buckling and free vibration , 1988 .

[11]  M. Touratier,et al.  An efficient standard plate theory , 1991 .

[12]  Kostas P. Soldatos,et al.  A transverse shear deformation theory for homogeneous monoclinic plates , 1992 .

[13]  Silvia Bertoluzza,et al.  A high order collocation method for the static and vibration analysis of composite plates using a first-order theory , 2009 .

[14]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[15]  Loc V. Tran,et al.  Isogeometric analysis of functionally graded plates using higher-order shear deformation theory , 2013 .

[16]  R. Shimpi,et al.  REFINED PLATE THEORY AND ITS VARIANTS , 2002 .

[17]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[18]  C.M.C. Roque,et al.  Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method , 2005 .

[19]  Metin Aydogdu,et al.  A new shear deformation theory for laminated composite plates , 2009 .

[20]  Ahmed K. Noor,et al.  Stability of multilayered composite plates , 1975 .

[21]  António J.M. Ferreira,et al.  Analysis of Composite Plates Using a Layerwise Theory and Multiquadrics Discretization , 2005 .

[22]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[23]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[24]  S. T. Chow,et al.  Buckling of Shear-Deformable Plates , 1987 .

[25]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[26]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .

[27]  A. K. Noor,et al.  Free vibrations of multilayered composite plates. , 1973 .

[28]  J. N. Reddy,et al.  Buckling and vibration of laminated composite plates using various plate theories , 1989 .

[29]  Hung Nguyen-Xuan,et al.  An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates , 2013 .

[30]  Tarun Kant,et al.  Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory , 2002 .

[31]  Chien H. Thai,et al.  Analysis of laminated composite plates using higher-order shear deformation plate theory and node-based smoothed discrete shear gap method , 2012 .

[32]  J. Reddy Mechanics of laminated composite plates : theory and analysis , 1997 .

[33]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[34]  R. Shimpi,et al.  A two variable refined plate theory for orthotropic plate analysis , 2006 .

[35]  Huu-Tai Thai,et al.  A refined plate theory for functionally graded plates resting on elastic foundation , 2011 .

[36]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[37]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[38]  N.G.R. Iyengar,et al.  A C0ELEMENT FOR THE FREE VIBRATION ANALYSIS OF LAMINATED COMPOSITE PLATES , 1996 .

[39]  Huu-Tai Thai,et al.  A two variable refined plate theory for laminated composite plates , 2009 .

[40]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[41]  S. Vel,et al.  Analytical Solution for Rectangular Thick Laminated Plates Subjected to Arbitrary Boundary Conditions , 1999 .

[42]  D. Roy,et al.  A NURBS-based Error Reproducing Kernel Method with Applications in Solid Mechanics , 2007 .

[43]  Hung Nguyen-Xuan,et al.  Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS‐based isogeometric approach , 2012 .

[44]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[45]  Dhanjoo N. Ghista,et al.  Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates , 2007 .

[46]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[47]  Tarun Kant,et al.  Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory , 2001 .