HUBBLE AND SPITZER SPACE TELESCOPE OBSERVATIONS OF THE DEBRIS DISK AROUND THE NEARBY K DWARF HD 92945

We present the first resolved images of the debris disk around the nearby K dwarf HD 92945, obtained with the Hubble Space Telescope's (HST 's) Advanced Camera for Surveys. Our F606W (Broad V) and F814W (Broad I) coronagraphic images reveal an inclined, axisymmetric disk consisting of an inner ring about 2".0-3".0 (43-65 AU) from the star and an extended outer disk whose surface brightness declines slowly with increasing radius approximately 3".0-5".1 (65-110 AU) from the star. A precipitous drop in the surface brightness beyond 110 AU suggests that the outer disk is truncated at that distance. The radial surface-density profile is peaked at both the inner ring and the outer edge of the disk. The dust in the outer disk scatters neutrally but isotropically, and it has a low V-band albedo of 0.1. This combination of axisymmetry, ringed and extended morphology, and isotropic neutral scattering is unique among the 16 debris disks currently resolved in scattered light. We also present new infrared photometry and spectra of HD 92945 obtained with the Spitzer Space Telescope's Multiband Imaging Photometer and InfraRed Spectrograph. These data reveal no infrared excess from the disk shortward of 30 μm and constrain the width of the 70 μm source to ≾180 AU. Assuming that the dust comprises compact grains of astronomical silicate with a surface-density profile described by our scattered-light model of the disk, we successfully model the 24-350 μm emission with a minimum grain size of a_(min) = 4.5 μm and a size distribution proportional to a^(–3.7) throughout the disk, but with maximum grain sizes of 900 μm in the inner ring and 50 μm in the outer disk. Together, our HST and Spitzer observations indicate a total dust mass of ~0.001M _⊕. However, our observations provide contradictory evidence of the dust's physical characteristics: its neutral V-I color and lack of 24 μm emission imply grains larger than a few microns, but its isotropic scattering and low albedo suggest a large population of submicron-sized grains. If grains smaller than a few microns are absent, then stellar radiation pressure may be the cause only if the dust is composed of highly absorptive materials like graphite. The dynamical causes of the sharply edged inner ring and outer disk are unclear, but recent models of dust creation and transport in the presence of migrating planets support the notion that the disk indicates an advanced state of planet formation around HD 92945.

[1]  James R. Graham,et al.  Discovery of Extreme Asymmetry in the Debris Disk Surrounding HD 15115 , 2007, 0704.0645.

[2]  Dust Migration and Morphology in Optically Thin Circumstellar Gas Disks , 2000, astro-ph/0012464.

[3]  T. Löhne,et al.  Dust distributions in debris disks: effects of gravity, radiation pressure and collisions , 2006 .

[4]  M. Franx,et al.  Hubble Space Telescope ACS Coronagraphic Imaging of the Circumstellar Disk around HD 141569A , 2003 .

[5]  M. Meyer,et al.  FAR-ULTRAVIOLET H2 EMISSION FROM CIRCUMSTELLAR DISKS , 2009, 0909.0688.

[6]  Scott J. Kenyon,et al.  Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets , 2007, 0710.1065.

[7]  B. Zuckerman,et al.  Submillimetre images of dusty debris around nearby stars , 1998, Nature.

[8]  Glenn Schneider,et al.  The Moth: An Unusual Circumstellar Structure Associated with HD 61005 , 2007 .

[9]  P. Plavchan,et al.  Where Are the M Dwarf Disks Older Than 10 Million Years , 2005, astro-ph/0506132.

[10]  M. Wyatt Dust in Resonant Extrasolar Kuiper Belts: Grain Size and Wavelength Dependence of Disk Structure , 2005, astro-ph/0511219.

[11]  James R. Graham,et al.  FIRST SCATTERED LIGHT IMAGES OF DEBRIS DISKS AROUND HD 53143 AND HD 139664 , 2006 .

[12]  N. Benı́tez,et al.  The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys , 2000, astro-ph/0507614.

[13]  J. Augereau,et al.  Collisional processes and size distribution in spatially extended debris discs , 2007, 0706.0344.

[14]  K. Stapelfeldt,et al.  A Spitzer Study of Dusty Disks around Nearby, Young Stars , 2005 .

[15]  Weinberger,et al.  The Circumstellar Disk of HD 141569 Imaged with NICMOS. , 1999, The Astrophysical journal.

[16]  Paul S. Smith,et al.  Reduction Algorithms for the Multiband Imaging Photometer for Spitzer , 2005, astro-ph/0502079.

[17]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[18]  J. Krist The Tiny Tim User’s Guide , 2004 .

[19]  T. Löhne,et al.  THE DEBRIS DISK OF VEGA: A STEADY-STATE COLLISIONAL CASCADE, NATURALLY , 2009, 0912.1190.

[20]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[21]  M. C. Wyatt,et al.  RESONANT TRAPPING OF PLANETESIMALS BY PLANET MIGRATION: DEBRIS DISK CLUMPS AND VEGA'S SIMILARITY TO THE SOLAR SYSTEM , 2003 .

[22]  Mark Clampin,et al.  HST AND SPITZER OBSERVATIONS OF THE HD 207129 DEBRIS RING , 2010, 1008.2793.

[23]  J. Lunine,et al.  Modeling the Infrared Emission from the HD 141569A Disk , 2003, astro-ph/0311070.

[24]  Erick T. Young,et al.  Multiband imaging photometer for SIRTF , 1998, Astronomical Telescopes and Instrumentation.

[25]  K. Rice,et al.  Protostars and Planets V , 2005 .

[26]  Peter Hall,et al.  Detection of the Buried Active Galactic Nucleus in NGC 6240 with the Infrared Spectrograph on the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[27]  Modelling the optical properties of composite and porous interstellar grains , 2004, astro-ph/0409457.

[28]  Brenda C. Matthews,et al.  Discovery of a Large Dust Disk Around the Nearby Star AU Microscopii , 2004, Science.

[29]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[30]  M. Franx,et al.  Hubble Space Telescope ACS Multiband Coronagraphic Imaging of the Debris Disk around β Pictoris , 2006 .

[31]  Mark Clampin,et al.  A planetary system as the origin of structure in Fomalhaut's dust belt , 2005, Nature.

[32]  James R. Graham,et al.  HUBBLE SPACE TELESCOPE OPTICAL IMAGING OF THE ERODING DEBRIS DISK HD 61005 , 2009, 0910.5223.

[33]  B. Zuckerman Dusty Circumstellar Disks , 2001 .

[34]  James R. Graham,et al.  The Signature of Primordial Grain Growth in the Polarized Light of the AU Microscopii Debris Disk , 2006 .

[35]  J. M. Greenberg,et al.  A model for the optical properties of porous grains , 1990 .

[36]  H. Klahr,et al.  Dust Distribution in Gas Disks: A Model for the Ring around HR 4796A , 2000, astro-ph/0007422.

[37]  New Mass-Loss Measurements from Astrospheric Lyα Absorption , 2005, astro-ph/0506401.

[38]  James R. Graham,et al.  The AU Microscopii Debris Disk: Multiwavelength Imaging and Modeling , 2007, 0705.4196.

[39]  Peter Plavchan,et al.  NEW DEBRIS DISKS AROUND YOUNG, LOW-MASS STARS DISCOVERED WITH THE SPITZER SPACE TELESCOPE , 2009, 0904.0819.

[40]  A. Boccaletti,et al.  A Giant Planet Imaged in the Disk of the Young Star β Pictoris , 2010, Science.

[41]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[42]  P. Thebault,et al.  Outer edges of debris discs - How sharp is sharp? , 2008, 0801.3724.

[43]  H. Beust,et al.  Dust production from collisions in extrasolar planetary systems. The inner beta Pictoris disc , 2003, astro-ph/0307167.

[44]  Yue Shen,et al.  MODELING POROUS DUST GRAINS WITH BALLISTIC AGGREGATES. II. LIGHT SCATTERING PROPERTIES , 2009, 0901.2177.

[45]  G. D. Illingworth,et al.  A Resolved Debris Disk around the G2 V Star HD 107146 , 2004 .

[46]  Amsterdam,et al.  The age dependence of the Vega phenomenon: Observations , 2003, astro-ph/0308294.

[47]  J. Graham,et al.  CARMA Millimeter-Wave Aperture Synthesis Imaging of the HD 32297 Debris Disk , 2008, 0808.3582.

[48]  James R. Graham,et al.  Discovery of an Extended Debris Disk around the F2 V Star HD 15745 , 2007, 0712.0378.

[49]  P. Kalas,et al.  First Optical Images of Circumstellar Dust Surrounding the Debris Disk Candidate HD 32297 , 2005 .

[50]  Modeling the Infrared Emission from the HR 4796A Disk , 2003, astro-ph/0311071.

[51]  James Liebert,et al.  The Two Micron All Sky Survey (2MASS): Overview and Status , 1997 .

[52]  Glenn Schneider,et al.  NICMOS Imaging of the HR 4796A Circumstellar Disk , 1999 .

[53]  Ari Laor,et al.  Spectroscopic constraints on the properties of dust in active galactic nuclei , 1993 .

[54]  The Nearest Young Moving Groups , 2006, astro-ph/0601573.

[55]  Bradford A. Smith,et al.  A Circumstellar Disk Around β Pictoris , 1984, Science.

[56]  Glenn Schneider,et al.  DISCOVERY OF A NEARLY EDGE-ON DISK AROUND HD 32297 , 2005 .

[57]  P. Denti,et al.  Radiation pressure cross-sections of fluffy interstellar grains , 2003 .

[58]  M. Jura The dust debris around HR 4796 , 1991 .

[59]  Mark Clampin,et al.  Overview of the Advanced Camera for Surveys on-orbit performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[60]  Mark Clampin,et al.  Discovery of an 86 AU Radius Debris Ring around HD 181327 , 2006 .

[61]  Dimitri Mawet,et al.  IMAGING THE DEBRIS DISK OF HD 32297 WITH A PHASE-MASK CORONAGRAPH AT HIGH STREHL RATIO , 2009 .

[62]  T. Forveille,et al.  Inhibition of giant-planet formation by rapid gas depletion around young stars , 1995, Nature.

[63]  B. Zuckerman,et al.  Dusty Debris Disks as Signposts of Planets: Implications for Spitzer Space Telescope , 2003, astro-ph/0311546.

[64]  T. Minato,et al.  Radiation pressure force acting on cometary aggregates , 2007 .

[65]  David A. Golimowski,et al.  Hubble Space Telescope Advanced Camera for Surveys Coronagraphic Imaging of the AU Microscopii Debris Disk , 2005 .

[66]  S. Kenyon,et al.  Dusty Rings: Signposts of Recent Planet Formation , 2002 .

[67]  John E. Krist,et al.  Advanced Camera for Surveys coronagraph on the Hubble Space Telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[68]  DUST DYNAMICS, SURFACE BRIGHTNESS PROFILES, AND THERMAL SPECTRA OF DEBRIS DISKS: THE CASE OF AU MICROSCOPII , 2005, astro-ph/0510527.

[69]  Collisional dust avalanches in debris discs , 2006, astro-ph/0609025.

[70]  HST/ACS MULTIBAND CORONAGRAPHIC IMAGING OF THE DEBRIS DISK AROUND BETA PICTORIS1 , 2006 .

[71]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[72]  COLLISIONAL CASCADES IN PLANETESIMAL DISKS. II. EMBEDDED PLANETS , 2003, astro-ph/0309540.

[73]  A. Moro-martin,et al.  The Complete Census of 70 μm-Bright Debris Disks within “The Formation and Evolution of Planetary Systems” Spitzer Legacy Survey of Sun-like Stars , 2007, 0801.0163.

[74]  P. Kalas,et al.  FOMALHAUT'S DEBRIS DISK AND PLANET: CONSTRAINING THE MASS OF FOMALHAUT B FROM DISK MORPHOLOGY , 2008, 0811.1985.