Daytime Top-of-the-Atmosphere Cirrus Cloud Radiative Forcing Properties at Singapore

AbstractDaytime top-of-the-atmosphere (TOA) cirrus cloud radiative forcing (CRF) is estimated for cirrus clouds observed in ground-based lidar observations at Singapore in 2010 and 2011. Estimates are derived both over land and water to simulate conditions over the broader Maritime Continent archipelago of Southeast Asia. Based on bookend constraints of the lidar extinction-to-backscatter ratio (20 and 30 sr), used to solve extinction and initialize corresponding radiative transfer model simulations, relative daytime TOA CRF is estimated at 2.858–3.370 W m−2 in 2010 (both 20 and 30 sr, respectively) and 3.078–3.329 W m−2 in 2011 and over water between −0.094 and 0.541 W m−2 in 2010 and −0.598 and 0.433 W m−2 in 2011 (both 30 and 20 sr, respectively). After normalizing these estimates for an approximately 80% local satellite-estimated cirrus cloud occurrence rate, they reduce in absolute daytime terms to 2.198–2.592 W m−2 in 2010 and 2.368–2.561 W m−2 in 2011 over land and −0.072–0.416 W m−2 in 2010 and −0...

[1]  Q. Fu,et al.  Parameterization of the Radiative Properties of Cirrus Clouds , 1993 .

[2]  Qiang Fu,et al.  Comparison of the CALIPSO satellite and ground‐based observations of cirrus clouds at the ARM TWP sites , 2011 .

[3]  Ellsworth J. Welton,et al.  Elevated Cloud and Aerosol Layer Retrievals from Micropulse Lidar Signal Profiles , 2008 .

[4]  Peter J. Webster,et al.  Clouds and Climate: Sensitivity of Simple Systems. , 1981 .

[5]  Chidong Zhang Madden–Julian Oscillation: Bridging Weather and Climate , 2013 .

[6]  Kenneth Sassen,et al.  Subvisual-Thin Cirrus Lidar Dataset for Satellite Verification and Climatological Research , 1992 .

[7]  Glenn S. Diskin,et al.  Relationships between Ice Water Content and Volume Extinction Coefficient from In Situ Observations for Temperatures from 0° to −86°C: Implications for Spaceborne Lidar Retrievals , 2014 .

[8]  P. Kollias,et al.  Lidar and Triple-Wavelength Doppler Radar Measurements of the Melting Layer: A Revised Model for Dark- and Brightband Phenomena , 2005 .

[9]  William L. Smith,et al.  A parameterization of ocean surface albedo , 2004 .

[10]  Yu Gu,et al.  Daytime Cirrus Cloud Top-of-Atmosphere Radiative Forcing Properties at a Midlatitude Site and their Global Consequence. , 2016, Journal of applied meteorology and climatology.

[11]  Soo Chin Liew,et al.  Tropical cirrus cloud contamination in sun photometer data , 2011 .

[12]  J. Pelon,et al.  Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans , 2015 .

[13]  N. C. Hsu,et al.  Evaluation of NASA Deep Blue/SOAR aerosol retrieval algorithms applied to AVHRR measurements , 2017, Journal of geophysical research. Atmospheres : JGR.

[14]  G. Kattawar,et al.  Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. , 2005, Applied optics.

[15]  Yu Gu,et al.  Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution , 2011 .

[16]  Robert E. Holz,et al.  Distinguishing cirrus cloud presence in autonomous lidar measurements , 2014 .

[17]  Simone Lolli,et al.  Evaluating Light Rain Drop Size Estimates from Multiwavelength Micropulse Lidar Network Profiling , 2013 .

[18]  K. Sassen,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and Synoptic Properties , 2001 .

[19]  H. Chepfer,et al.  Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel , 2013 .

[20]  Dong L. Wu,et al.  Cloud ice: A climate model challenge with signs and expectations of progress , 2007 .

[21]  R. Marchand,et al.  A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data , 2009 .

[22]  Yu Gu,et al.  Parameterization of Cloud–Radiation Processes in the UCLA General Circulation Model , 2003 .

[23]  Q. Fu,et al.  On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres , 1992 .

[24]  Jasper R. Lewis,et al.  Overview of MPLNET Version 3 Cloud Detection. , 2016, Journal of atmospheric and oceanic technology.

[25]  Philippe Xu,et al.  Atmospheric Chemistry and Physics Measuring the Antarctic Ozone Hole with the New Ozone Mapping and Profiler Suite (omps) , 2022 .

[26]  S. Liang,et al.  An Improved Land Surface Emissivity Parameter for Land Surface Models Using Global Remote Sensing Observations , 2006 .

[27]  Steven A. Ackerman,et al.  Cloud Detection with MODIS. Part II: Validation , 2008 .

[28]  C. Long,et al.  Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia , 2014 .

[29]  H. Treut,et al.  THE CALIPSO MISSION: A Global 3D View of Aerosols and Clouds , 2010 .

[30]  M. Satoh,et al.  Vertical grid spacing necessary for simulating tropical cirrus clouds with a high‐resolution atmospheric general circulation model , 2015 .

[31]  G. Mace,et al.  Cloud properties and radiative effects of the Asian summer monsoon derived from A‐Train data , 2014 .

[32]  K. Liou,et al.  Parameterization of the scattering and absorption properties of individual ice crystals , 2000 .