A bound for Dickson's lemma
暂无分享,去创建一个
[1] Helmut Schwichtenberg,et al. Proofs and Computations , 2012, Perspectives in logic.
[2] Ulrich Berger,et al. Program Extraction from Normalization Proofs , 2006, Stud Logica.
[3] Stephen G. Simpson,et al. Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen , 1985, Arch. Math. Log..
[4] B. Buchberger,et al. Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .
[5] Daniel Fridlender. Higman's lemma in type theory , 1998 .
[6] Aaron Hertz May. A Constructive Version of the Hilbert Basis Theorem , 2004 .
[7] Ulrich Berger,et al. Uniform Heyting arithmetic , 2005, Ann. Pure Appl. Log..
[8] A. Troelstra,et al. Constructivism in Mathematics: An Introduction , 1988 .
[9] C. Nash-Williams. On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.
[10] Ulrich Berger,et al. REVIEWS-Refined program extraction from classical proofs , 2003 .
[11] Von Kurt Gödel,et al. ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .
[12] Mátyás A. Sustik. Proof of Dickson ’ s Lemma Using the ACL 2 Theorem Prover via an Explicit Ordinal Mapping , 2003 .
[13] L. Dickson. Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors , 1913 .
[14] Francisco-Jesús Martín-Mateos,et al. Proof Pearl: a Formal Proof of Higman’s Lemma in ACL2 , 2005, Journal of Automated Reasoning.
[15] A. Troelstra. Constructivism in mathematics , 1988 .
[16] Stephen G. Simpson,et al. Ordinal numbers and the Hilbert basis theorem , 1988, Journal of Symbolic Logic.
[17] Wim Veldman,et al. An intuitionistic proof of Kruskal’s theorem , 2004, Arch. Math. Log..
[18] Harvey M. Friedman,et al. Classically and intuitionistically provably recursive functions , 1978 .