A bound for Dickson's lemma

We consider a special case of Dickson's lemma: for any two functions $f,g$ on the natural numbers there are two numbers $i<j$ such that both $f$ and $g$ weakly increase on them, i.e., $f_i\le f_j$ and $g_i \le g_j$. By a combinatorial argument (due to the first author) a simple bound for such $i,j$ is constructed. The combinatorics is based on the finite pigeon hole principle and results in a descent lemma. From the descent lemma one can prove Dickson's lemma, then guess what the bound might be, and verify it by an appropriate proof. We also extract (via realizability) a bound from (a formalization of) our proof of the descent lemma. Keywords: Dickson's lemma, finite pigeon hole principle, program extraction from proofs, non-computational quantifiers.

[1]  Helmut Schwichtenberg,et al.  Proofs and Computations , 2012, Perspectives in logic.

[2]  Ulrich Berger,et al.  Program Extraction from Normalization Proofs , 2006, Stud Logica.

[3]  Stephen G. Simpson,et al.  Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen , 1985, Arch. Math. Log..

[4]  B. Buchberger,et al.  Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[5]  Daniel Fridlender Higman's lemma in type theory , 1998 .

[6]  Aaron Hertz May A Constructive Version of the Hilbert Basis Theorem , 2004 .

[7]  Ulrich Berger,et al.  Uniform Heyting arithmetic , 2005, Ann. Pure Appl. Log..

[8]  A. Troelstra,et al.  Constructivism in Mathematics: An Introduction , 1988 .

[9]  C. Nash-Williams On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Ulrich Berger,et al.  REVIEWS-Refined program extraction from classical proofs , 2003 .

[11]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[12]  Mátyás A. Sustik Proof of Dickson ’ s Lemma Using the ACL 2 Theorem Prover via an Explicit Ordinal Mapping , 2003 .

[13]  L. Dickson Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors , 1913 .

[14]  Francisco-Jesús Martín-Mateos,et al.  Proof Pearl: a Formal Proof of Higman’s Lemma in ACL2 , 2005, Journal of Automated Reasoning.

[15]  A. Troelstra Constructivism in mathematics , 1988 .

[16]  Stephen G. Simpson,et al.  Ordinal numbers and the Hilbert basis theorem , 1988, Journal of Symbolic Logic.

[17]  Wim Veldman,et al.  An intuitionistic proof of Kruskal’s theorem , 2004, Arch. Math. Log..

[18]  Harvey M. Friedman,et al.  Classically and intuitionistically provably recursive functions , 1978 .