Modelling the effect of particle inertia on the orientation kinematics of fibres and spheroids immersed in a simple shear flow

[1]  G. B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .

[2]  P. Saffman,et al.  On the motion of small spheroidal particles in a viscous liquid , 1956, Journal of Fluid Mechanics.

[3]  Howard Brenner,et al.  The Stokes resistance of an arbitrary particle—III: Shear fields , 1964 .

[4]  E. J. Hinch,et al.  The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles , 1972, Journal of Fluid Mechanics.

[5]  C. L. Tucker,et al.  Orientation Behavior of Fibers in Concentrated Suspensions , 1984 .

[6]  Suresh G. Advani,et al.  The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites , 1987 .

[7]  Suresh G. Advani,et al.  Closure approximations for three‐dimensional structure tensors , 1990 .

[8]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[9]  Charles L. Tucker,et al.  Orthotropic closure approximations for flow-induced fiber orientation , 1995 .

[10]  Ashok Srinivasan,et al.  Smoothed particle hydrodynamics techniques for the solution of kinetic theory problems Part 1: Method , 1997 .

[11]  F. Dupret,et al.  Numerical Prediction of the Molding of Composite Parts , 1997, Rheology and Fluid Mechanics of Nonlinear Materials.

[12]  A. Malevanets,et al.  Mesoscopic model for solvent dynamics , 1999 .

[13]  L. Gary Leal,et al.  Smoothed particle hydrodynamics techniques for the solution of kinetic theory problems: Part 2. The effect of flow perturbations on the simple shear behavior of LCPs , 1999 .

[14]  C. Petrie,et al.  The rheology of fibre suspensions , 1999 .

[15]  Cyrus K. Aidun,et al.  The dynamics and scaling law for particles suspended in shear flow with inertia , 2000, Journal of Fluid Mechanics.

[16]  T. Ihle,et al.  Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Tai Hun Kwon,et al.  Invariant-based optimal fitting closure approximation for the numerical prediction of flow-induced fiber orientation , 2002 .

[18]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[19]  K. Kremer,et al.  Advanced Computer Simulation Approaches for Soft Matter Sciences III , 2005 .

[20]  Donald L. Koch,et al.  Inertial effects on fibre motion in simple shear flow , 2005, Journal of Fluid Mechanics.

[21]  Donald L. Koch,et al.  Inertial effects on the orientation of nearly spherical particles in simple shear flow , 2006, Journal of Fluid Mechanics.

[22]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[23]  Nhan Phan-Thien,et al.  Rotation of a spheroid in a Couette flow at moderate Reynolds numbers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Hiroshi Noguchi,et al.  Relevance of angular momentum conservation in mesoscale hydrodynamics simulations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .

[26]  Holm Altenbach,et al.  Influence of rotary inertia on the fiber dynamics in homogeneous creeping flows , 2007 .

[27]  Hiroshi Noguchi,et al.  Transport coefficients of dissipative particle dynamics with finite time step , 2007, 0705.3317.

[28]  Hiroshi Noguchi,et al.  Transport coefficients of off-lattice mesoscale-hydrodynamics simulation techniques. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Holm Altenbach,et al.  Rotation of a slender particle in a shear flow: influence of the rotary inertia and stability analysis , 2009 .

[30]  Allan Carlsson,et al.  Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  T. Maung on in C , 2010 .

[32]  Fredrik Lundell,et al.  The effect of particle inertia on triaxial ellipsoids in creeping shear: From drift toward chaos to a single periodic solution , 2011 .

[33]  Adrien Leygue,et al.  An overview of the proper generalized decomposition with applications in computational rheology , 2011 .

[34]  Francisco Chinesta,et al.  From Single-Scale to Two-Scales Kinetic Theory Descriptions of Rods Suspensions , 2013 .

[35]  F. Lundell,et al.  Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow , 2013, Journal of Fluid Mechanics.

[36]  Adrien Leygue,et al.  The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer , 2013 .

[37]  Alexander Alexeev,et al.  Motion of spheroid particles in shear flow with inertia , 2014, Journal of Fluid Mechanics.

[38]  T Rosén,et al.  Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  C. Aidun,et al.  Effect of fluid and particle inertia on the rotation of an oblate spheroidal particle suspended in linear shear flow. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  J. Angilella,et al.  Effect of weak fluid inertia upon Jeffery orbits. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  J. Angilella,et al.  Rotation of a spheroid in a simple shear at small Reynolds number , 2015, 1504.02309.

[42]  Francisco Chinesta,et al.  On the Multiscale Description of Dilute Suspensions of Non-Brownian Rigid Clusters Composed of Rods , 2015 .

[43]  E. Abisset-Chavanne,et al.  A Second-Gradient Theory of Dilute Suspensions of Flexible Rods in a Newtonian Fluid , 2015 .

[44]  Francisco Chinesta,et al.  Flows in Polymers, Reinforced Polymers and Composites: A Multi-Scale Approach , 2015 .

[45]  Francisco Chinesta,et al.  Direct simulation of concentrated fiber suspensions subjected to bending effects , 2015 .

[46]  Francisco Chinesta,et al.  On the multi-scale description of electrical conducting suspensions involving perfectly dispersed rods , 2015, Adv. Model. Simul. Eng. Sci..

[47]  J Einarsson,et al.  Role of inertia for the rotation of a nearly spherical particle in a general linear flow. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Roland G Winkler,et al.  Bulk viscosity of multiparticle collision dynamics fluids. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  C. K. Aidun,et al.  The dynamical states of a prolate spheroidal particle suspended in shear flow as a consequence of particle and fluid inertia , 2015, Journal of Fluid Mechanics.

[50]  Francisco Chinesta,et al.  A multi-scale description of orientation in simple shear flows of confined rod suspensions , 2016 .

[51]  Francisco Chinesta,et al.  Analysis of the Folgar & Tucker model for concentrated fibre suspensions in unconfined and confined shear flows via direct numerical simulation , 2016 .

[52]  Francisco Chinesta,et al.  Second-gradient modelling of orientation development and rheology of dilute confined suspensions , 2016 .

[53]  CH' , 2018, Dictionary of Upriver Halkomelem.