Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission

The paper describes the design of a medium infrared fiber laser based on a dysprosium-doped chalcogenide glass <inline-formula><tex-math notation="LaTeX">$\text{Dy}^{3+}: \text{Ga}_{5}\text{Ge}_{20}\text{Sb}_{10}\text{S}_{65}$ </tex-math></inline-formula>. To obtain a high efficiency, the fiber laser is followed by an optical amplifier. The optimized optical source exploits a master oscillator power amplifier (MOPA) configuration. The MOPA pump and signal wavelengths are 1709 and 4384 nm, respectively. Spectroscopic parameters measured on preliminary samples of chalcogenide glasses are taken into account to fulfill realistic simulations. The MOPA emission is maximized by applying a particle swarm optimization approach. For the dysprosium concentration <inline-formula> <tex-math notation="LaTeX">${\text{6}}\, \times\, {\text{10}}^{25}$</tex-math></inline-formula> ions/ <inline-formula><tex-math notation="LaTeX">$\text{m}^{3}$</tex-math></inline-formula> and the input pump power of 3 W, an output power of 637 mW can be obtained for optical fiber losses close to 1 dB <inline-formula> <tex-math notation="LaTeX">$\text{m}^{-1}$</tex-math></inline-formula>. The optimized MOPA configuration allows a laser efficiency larger than 21%. By considering the high beam quality provided by photonic crystal fibers, it is a good candidate for medium infrared light generation whose main applications include, but are not limited to, molecular spectroscopy and environmental monitoring.

[1]  F.. Prudenzano,et al.  Optimization and Characterization of Rare-Earth-Doped Photonic-Crystal-Fiber Amplifier Using Genetic Algorithm , 2007, Journal of Lightwave Technology.

[2]  Virginie Nazabal,et al.  Design of an Efficient Pumping Scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF Fiber Laser , 2016, IEEE Photonics Technology Letters.

[3]  Virginie Nazabal,et al.  Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers , 2009 .

[4]  Helena Jelínková,et al.  Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode. , 2013, Optics letters.

[5]  Virginie Nazabal,et al.  Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers , 2010 .

[6]  Jasbinder S. Sanghera,et al.  Infrared Fiber $N \times 1$ Multimode Combiner , 2013, IEEE Photonics Journal.

[7]  Laurent Brilland,et al.  Fabrication of complex structures of Holey Fibers in Chalcogenide glass. , 2006, Optics express.

[8]  S. Sujecki,et al.  Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation , 2010 .

[9]  Francesco Prudenzano,et al.  Tapered photonic bandgap microstrip lowpass filters: design and realisation , 2003 .

[10]  Francesco Prudenzano,et al.  Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator. , 2012, Optics express.

[11]  M. Ibsen,et al.  345-mW 1836-nm single-frequency DFB fiber laser MOPA , 2005, IEEE Photonics Technology Letters.

[12]  Woohong Kim,et al.  Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development. , 2015, Optics letters.

[13]  Francesco Prudenzano,et al.  Design of double-clad erbium-doped holey fiber amplifier , 2005 .

[14]  Tetsuji Yano,et al.  Design of fiber coupled Er3+:chalcogenide microsphere amplifier via particle swarm optimization algorithm , 2013 .

[15]  R. S. Quimby,et al.  Modeling of Cascade Lasing in Dy : Chalcogenide Glass Fiber Laser With Efficient Output at 4.5 $\mu$m , 2008, IEEE Photonics Technology Letters.

[16]  Norman P. Barnes,et al.  Room temperature Dy:YLF laser operation at 4.34 mu m , 1991 .

[17]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[18]  Trevor M. Benson,et al.  Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+ , 2012 .

[19]  E. M. Dianov,et al.  High-purity chalcogenide glasses for fiber optics , 2009 .

[20]  Virginie Nazabal,et al.  Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers , 2015 .

[21]  M. De Sario,et al.  Tunability of Photonic Band Gap Notch Filters , 2008, IEEE Transactions on Nanotechnology.

[22]  Virginie Nazabal,et al.  Design of Er3+-doped chalcogenide glass laser for MID-IR application , 2009 .

[23]  Thierry Robin,et al.  Optimization of the Design of High Power $\hbox{Er}^{3+}/\hbox{Yb}^{3+}$-Codoped Fiber Amplifiers for Space Missions by Means of Particle Swarm Approach , 2014, IEEE Journal of Selected Topics in Quantum Electronics.