Mathematical Analysis and the Local Discontinuous Galerkin Method for Caputo–Hadamard Fractional Partial Differential Equation

In this paper, we study the Caputo–Hadamard fractional partial differential equation where the time derivative is the Caputo–Hadamard fractional derivative and the space derivative is the integer-order one. We first introduce a modified Laplace transform. Then using the newly defined Laplace transform and the well-known finite Fourier sine transform, we obtain the analytical solution to this kind of linear equation. Furthermore, we study the regularity and logarithmic decay of its solution. Since the equation has a time fractional derivative, its solution behaves a certain weak regularity at the initial time. We use the finite difference scheme on non-uniform meshes to approximate the time fractional derivative in order to guarantee the accuracy and use the local discontinuous Galerkin method (LDG) to approximate the spacial derivative. The fully discrete scheme is established and analyzed. A numerical example is displayed which support the theoretical analysis.

[1]  Madiha Gohar,et al.  On Caputo–Hadamard fractional differential equations , 2020, Int. J. Comput. Math..

[2]  Yubin Yan,et al.  Discontinuous Galerkin time stepping method for solving linear space fractional partial differential equations , 2017 .

[3]  Changpin Li,et al.  ON HADAMARD FRACTIONAL CALCULUS , 2017 .

[4]  J. Hadamard,et al.  Essai sur l'étude des fonctions données par leur développement de Taylor , 1892 .

[5]  Yury Luchko,et al.  Maximum principle for the generalized time-fractional diffusion equation , 2009 .

[6]  Changpin Li,et al.  The discontinuous Galerkin finite element method for Caputo-type nonlinear conservation law , 2020, Math. Comput. Simul..

[7]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[8]  Yang Liu,et al.  Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation , 2017, J. Comput. Phys..

[9]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[10]  Changpin Li,et al.  Theory and Numerical Approximations of Fractional Integrals and Derivatives , 2019 .

[11]  Yuri Luchko,et al.  Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation , 2011, 1111.2961.

[12]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[13]  T. Abdeljawad,et al.  Generalized fractional derivatives and Laplace transform , 2020, Discrete & Continuous Dynamical Systems - S.

[14]  I. Podlubny Fractional differential equations , 1998 .

[15]  Dumitru Baleanu,et al.  Caputo-type modification of the Hadamard fractional derivatives , 2012, Advances in Difference Equations.

[16]  Changpin Li,et al.  Asymptotic behaviours of solution to Caputo–Hadamard fractional partial differential equation with fractional Laplacian , 2020, Int. J. Comput. Math..

[17]  Jose L. Gracia,et al.  Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..

[18]  Ahmed Alsaedi,et al.  Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities , 2017 .

[19]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[20]  Yinnian He,et al.  Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems☆ , 2014 .

[21]  Changpin Li,et al.  The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis , 2019, Applied Numerical Mathematics.

[22]  Anatoly A. Kilbas,et al.  HADAMARD-TYPE FRACTIONAL CALCULUS , 2001 .

[23]  Bernardo Cockburn,et al.  Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..

[24]  L. Debnath,et al.  Integral Transforms and Their Applications, Second Edition , 2006 .

[25]  Changpin Li,et al.  Finite Difference Methods for Caputo–Hadamard Fractional Differential Equations , 2020 .

[26]  F. Mainardi,et al.  A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus , 2017, 1701.03068.

[27]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[28]  Jan S. Hesthaven,et al.  Discontinuous Galerkin Method for Fractional Convection-Diffusion Equations , 2013, SIAM J. Numer. Anal..