Finite-Time Thermodynamics and Exergy Analysis of a Stirling Engine for Space Power Generation

[1]  J. H. Pitts,et al.  Conceptual Design of a 10-Mw e Nuclear Rankine System for Space Power , 1970 .

[2]  Lamartine Nogueira Frutuoso Guimarães,et al.  American Space Nuclear Electric Systems , 2018, Journal of Aerospace Technology and Management.

[3]  Hoseyn Sayyaadi,et al.  Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power , 2013 .

[4]  Nadia Martaj,et al.  Exergetical analysis and design optimisation of the Stirling engine , 2006 .

[5]  Tong Zhou,et al.  Thermodynamic analysis and optimization of a Stirling cycle for lunar surface nuclear power system , 2017 .

[6]  Mohamed S. El-Genk,et al.  Space nuclear reactor power system concepts with static and dynamic energy conversion , 2008 .

[7]  Sutapat Kwankaomeng,et al.  Investigation on Stability and Performance of a Free-piston Stirling Engine , 2014 .

[8]  Alfonso Biondi,et al.  Closed Brayton Cycles for Power Generation in Space: Modeling, simulation and exergy analysis , 2019, Energy.

[9]  Mohamed S. El-Genk,et al.  Space reactor power systems with no single point failures , 2008 .

[10]  David I. Poston,et al.  The Kilopower Reactor Using Stirling TechnologY (KRUSTY) Nuclear Ground Test Results and Lessons Learned , 2018, 2018 International Energy Conversion Engineering Conference.

[11]  D. G. Thombare,et al.  TECHNOLOGICAL DEVELOPMENT IN THE STIRLING CYCLE ENGINES , 2008 .

[12]  Fabiano Luis de Sousa,et al.  Comprehensive optimization of a heat pipe radiator assembly filled with ammonia or acetone , 2006 .

[13]  Fathollah Pourfayaz,et al.  Thermal models for analysis of performance of Stirling engine: A review , 2017 .

[14]  R. Petela Exergy of Heat Radiation , 1964 .

[15]  Jeffrey G. Schreiber,et al.  Development of Advanced Stirling Radioisotope Generator for Space Exploration , 2007 .

[16]  Steven R. Oleson,et al.  NASA's Kilopower reactor development and the path to higher power missions , 2017, 2017 IEEE Aerospace Conference.

[17]  Maxwell H. Briggs Improving Free-Piston Stirling Engine Power Density , 2016 .

[18]  Fang Yuan,et al.  Imperfect regeneration analysis of Stirling engine caused by temperature differences in regenerator , 2018 .

[19]  C. Haden,et al.  Yield Strength Prediction of Titanium Alloys , 2015 .

[20]  Lee S. Mason,et al.  Development of NASA's Small Fission Power System for Science and Human Exploration , 2015 .

[21]  Albert J. Juhasz Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator , 2013 .

[22]  Jeffrey G. Schreiber,et al.  A Historical Review of Brayton and Stirling Power Conversion Technologies for Space Applications , 2007 .

[23]  M. Noca,et al.  Evolutionary strategy for the use of nuclear electric propulsion in planetary exploration , 2001 .

[24]  G. Su,et al.  Design and heat transfer optimization of a 1 kW free-piston stirling engine for space reactor power system , 2021, Nuclear Engineering and Technology.

[25]  S. Qiu,et al.  Design and analysis of a free-piston stirling engine for space nuclear power reactor , 2020 .

[26]  Wang Weiwei,et al.  Optimization of solar-powered Stirling heat engine with finite-time thermodynamics , 2011 .

[27]  David I. Poston,et al.  Results of the KRUSTY Nuclear System Test , 2020 .

[28]  Mohamed S. El-Genk,et al.  Long operation life reactor for lunar surface power , 2011 .

[29]  Noam Lior,et al.  Analysis of thermal cycles and working fluids for power generation in space , 2007 .

[30]  Marc A. Gibson,et al.  Electrically Heated Testing of the Kilowatt Reactor Using Stirling Technology (KRUSTY) Experiment Using a Depleted Uranium Core , 2017 .

[31]  Jian Lin,et al.  Optimum performance characteristics of a solar-driven Stirling heat engine system , 2015 .

[32]  Edward Smith,et al.  Pathfinding the Flight Advanced Stirling Convertor Design with the ASC-E3 , 2012 .

[33]  Senqing Fan,et al.  Thermodynamic performance of lunar surface nuclear power system with heat sink temperature change in a rotational period , 2018 .

[34]  Weston A. Hermann Quantifying global exergy resources , 2006 .

[35]  Franco Rispoli,et al.  A numerical method to evaluate heat exchangers performance of external combustion engine , 1989, Proceedings of the 24th Intersociety Energy Conversion Engineering Conference.

[36]  Mohamed S. El-Genk,et al.  Brayton rotating units for space reactor power systems , 2009 .

[37]  George Dochat,et al.  SPDE/SPRE final summary report , 1993 .

[38]  Bjarne Andresen,et al.  Finite-time thermodynamics and thermodynamic length , 1996 .

[39]  Francisco A. Braz Filho,et al.  Thermodynamic analysis and optimization of a Closed Regenerative Brayton Cycle for nuclear space power systems , 2015 .

[40]  Juan C. Ordonez,et al.  Thermodynamic optimization of a Stirling engine , 2012 .

[41]  G. Ribeiro,et al.  Parametric evaluation of a heat pipe-radiator assembly for nuclear space power systems , 2019, Thermal Science and Engineering Progress.

[42]  Bahman Zohuri,et al.  Heat Pipe Design and Technology , 2016 .