Cartilage is a connective tissue which a limited capacity for healing and repairing. In this context, osteoarthritis disease may be developed with high prevalence in which the use of scaffolds may be a promising treatment. In addition, three-dimensional (3D) bioprinting has become an emerging additive manufacturing technology because of its rapid prototyping capacity and the possibility of creating complex structures. This study was focused on the development of nanocellulose-alginate (NC-Alg) based bioinks for 3D bioprinting for cartilage regeneration to which it was added chondroitin sulfate (CS) and dermatan sulfate (DS). First, rheological properties were evaluated. Then, sterilisation effect, biocompatibility and printability on developed NC-Alg-CS and NC-Alg-DS inks were evaluated. Subsequently, printed scaffolds were characterized. Finally, NC-Alg-CS and NC-Alg-DS inks were loaded with murine D1-MSCs-EPO and cell viability and functionality, as well as the chondrogenic differentiation ability were assessed. Results showed that the addition of both CS and DS to the NC-Alg ink improved its characteristics in terms of rheology and cell viability and functionality. Moreover, differentiation to cartilage was promoted on NC-Alg-CS and NC-Alg-DS scaffolds. Therefore, the utilization of MSCs containing NC-Alg-CS and NC-Alg-DS scaffolds may become a feasible tissue engineering approach for cartilage regeneration. This article is protected by copyright. All rights reserved.