Highly elastomeric photocurable silk hydrogels.

[1]  A. Sharma,et al.  Hydrogel nanotubes with ice helices as exotic nanostructures for diabetic wound healing , 2019, Materials Horizons.

[2]  S. Chawla,et al.  Developmental Biology-Inspired Strategies To Engineer 3D Bioprinted Bone Construct. , 2018, ACS biomaterials science & engineering.

[3]  J. Faist,et al.  Single-Shot Sub-microsecond Mid-infrared Spectroscopy on Protein Reactions with Quantum Cascade Laser Frequency Combs. , 2018, Analytical chemistry.

[4]  S. Chawla,et al.  Establishment of an in vitro organoid model of dermal papilla of human hair follicle , 2018, Journal of cellular physiology.

[5]  Swati Midha,et al.  Silk‐Based Bioinks for 3D Bioprinting , 2018, Advanced healthcare materials.

[6]  S. Kundu,et al.  Silk Fibroin/Polyvinyl Pyrrolidone Interpenetrating Polymer Network Hydrogels , 2018, Polymers.

[7]  Vamsi K Yadavalli,et al.  Swellable silk fibroin microneedles for transdermal drug delivery. , 2018, International journal of biological macromolecules.

[8]  S. Chawla,et al.  Elucidating role of silk-gelatin bioink to recapitulate articular cartilage differentiation in 3D bioprinted constructs , 2017 .

[9]  Benjamin P. Partlow,et al.  3D Printing of Regenerated Silk Fibroin and Antibody-Containing Microstructures via Multiphoton Lithography. , 2017, ACS biomaterials science & engineering.

[10]  S. Midha,et al.  Nonmulberry Silk Braids Direct Terminal Osteocytic Differentiation through Activation of Wnt-Signaling. , 2017, ACS biomaterials science & engineering.

[11]  Swati Midha,et al.  Regulation of Chondrogenesis and Hypertrophy in Silk Fibroin-Gelatin-Based 3D Bioprinted Constructs. , 2016, ACS biomaterials science & engineering.

[12]  David L Kaplan,et al.  Photocrosslinking of Silk Fibroin Using Riboflavin for Ocular Prostheses , 2016, Advanced materials.

[13]  B. Zuo,et al.  Novel two-step method to form silk fibroin fibrous hydrogel. , 2016, Materials science & engineering. C, Materials for biological applications.

[14]  Sourabh Ghosh,et al.  Modulation of Self-Assembly Process of Fibroin: An Insight for Regulating the Conformation of Silk Biomaterials. , 2015, Biomacromolecules.

[15]  Fang Zhang,et al.  Excellent Cell Compatibility in Time Controlled Silk Fibroin Hydrogels , 2015 .

[16]  D. Kaplan,et al.  Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. , 2015, Acta biomaterialia.

[17]  Jelena Rnjak-Kovacina,et al.  Highly Tunable Elastomeric Silk Biomaterials , 2014, Advanced functional materials.

[18]  L. Meinel,et al.  Decoration of silk fibroin by click chemistry for biomedical application. , 2014, Journal of structural biology.

[19]  S. Kundu,et al.  Silk proteins for biomedical applications: Bioengineering perspectives , 2014 .

[20]  B. Zuo,et al.  A novel silk fibroin/sodium alginate hybrid scaffolds , 2014 .

[21]  R. Reis,et al.  Silk hydrogels from non-mulberry and mulberry silkworm cocoons processed with ionic liquids. , 2013, Acta biomaterialia.

[22]  Sanskrita Das,et al.  Enhanced redifferentiation of chondrocytes on microperiodic silk/gelatin scaffolds: toward tailor-made tissue engineering. , 2013, Biomacromolecules.

[23]  Xiaoyong Chen,et al.  Rheological study on tetrafluoroethylene/hexafluoropropylene copolymer and its implication for processability , 2012 .

[24]  D. Kaplan,et al.  Sodium dodecyl sulfate-induced rapid gelation of silk fibroin. , 2012, Acta biomaterialia.

[25]  Joydip Kundu,et al.  Invited review nonmulberry silk biopolymers. , 2012, Biopolymers.

[26]  David L. Kaplan,et al.  Fabrication of Silk Microneedles for Controlled‐Release Drug Delivery , 2012 .

[27]  D. Kaplan,et al.  Materials fabrication from Bombyx mori silk fibroin , 2011, Nature Protocols.

[28]  A. Ray,et al.  Unveiling the self-assembly behavior of copolymers of AAc and DMAPMA in situ to form smart hydrogels displaying nanogels-within-macrogel hierarchical morphology , 2011 .

[29]  K. Numata,et al.  State of water, molecular structure, and cytotoxicity of silk hydrogels. , 2011, Biomacromolecules.

[30]  Xungai Wang,et al.  Structure and properties of biomedical films prepared from aqueous and acidic silk fibroin solutions. , 2011, Journal of biomedical materials research. Part A.

[31]  A. Khademhosseini,et al.  Cell-laden microengineered gelatin methacrylate hydrogels. , 2010, Biomaterials.

[32]  T. Nicolai,et al.  Structure and gelation mechanism of silk hydrogels. , 2010, Physical chemistry chemical physics : PCCP.

[33]  David L Kaplan,et al.  Vortex-induced injectable silk fibroin hydrogels. , 2009, Biophysical journal.

[34]  Kristi S Anseth,et al.  Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. , 2009, Tissue engineering. Part A.

[35]  David L Kaplan,et al.  Silk film biomaterials for cornea tissue engineering. , 2009, Biomaterials.

[36]  Mehrdad Hamidi,et al.  Hydrogel nanoparticles in drug delivery. , 2008, Advanced drug delivery reviews.

[37]  A. Khademhosseini,et al.  Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs , 2008, Proceedings of the National Academy of Sciences.

[38]  David L. Kaplan,et al.  Dynamic Protein−Water Relationships during β-Sheet Formation , 2008 .

[39]  David L Kaplan,et al.  Sonication-induced gelation of silk fibroin for cell encapsulation. , 2008, Biomaterials.

[40]  D. Kaplan,et al.  Mechanisms of silk fibroin sol-gel transitions. , 2006, The journal of physical chemistry. B.

[41]  David L. Kaplan,et al.  Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy , 2006 .

[42]  Cai Libin Synthesis of Copolymer Hydrogel for Cornea Contact Lens and Study on Its Ion Penetration Capability , 2006 .

[43]  W. Saltzman,et al.  Improved cell adhesion and proliferation on synthetic phosphonic acid-containing hydrogels. , 2005, Biomaterials.

[44]  Li Xin-ming STUDY ON COPOLYMER HYDROGEL FOR CONTACT LENS , 2004 .

[45]  C. van Nostrum,et al.  Novel crosslinking methods to design hydrogels. , 2002, Advanced drug delivery reviews.

[46]  K. Anseth,et al.  Attachment of fibronectin to poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration. , 2001, Journal of biomedical materials research.

[47]  C. Cho,et al.  Effects of poloxamer on the gelation of silk fibroin , 2000 .

[48]  Y. Lai Effect of crosslinkers on photocopolymerization of N-vinylpyrrolidone and methacrylates to give hydrogels , 1997 .

[49]  M. Pons,et al.  INSTRUMENTAL TEXTURE PROFILE ANALYSIS WITH PARTICULAR REFERENCE TO GELLED SYSTEMS , 1996 .

[50]  R. Amadó,et al.  Formation of dityrosine cross-links in proteins by oxidation of tyrosine residues. , 1976, Biochimica et biophysica acta.