Auxiliary Information and a priori Values in Construction of Improved Estimators
暂无分享,去创建一个
Florentin Smarandache | Rajesh Singh | Pankaj Chauhan | Nirmala Sawan | F. Smarandache | Rajesh Singh | P. Chauhan | N. Sawan
[1] Donald T. Searls,et al. A Note on an Estimator for the Variance That Utilizes the Kurtosis , 1990 .
[2] A. Winsor. Sampling techniques. , 2000, Nursing times.
[3] M. R. Espejo,et al. On linear regression and ratio–product estimation of a finite population mean , 2003 .
[4] Shashi Bahl,et al. Difference-cum-ratio type estimators , 1999 .
[5] I. Olkin,et al. Sampling theory of surveys, with applications , 1955 .
[6] T. J. Rao. Contributions to the theory of sampling strategies , 1967 .
[7] M. N. Murthy. Sampling theory and methods. , 1967 .
[8] Cem Kadilar,et al. Ratio estimators for the population variance in simple and stratified random sampling , 2006, Appl. Math. Comput..
[9] K. Hirano,et al. On the utilization of a known coefficient of kurtosis in the estimation procedure of variance , 1973 .
[10] Florentin Smarandache,et al. A General Family of Estimators for Estimating Population Mean Using Known Value of Some Population Parameter(s) , 2007, math/0701243.
[11] Housila P. Singh,et al. Use of Transformed Auxiliary Variable in Estimating the Finite Population Mean , 1999 .
[12] L. N. Upadhyaya,et al. Ratio-cum-product type exponential estimator , 2009 .
[13] M. A. Hidiroglou,et al. Use of Auxiliary Information for Two-phase sampling , 2002 .
[14] C. T. Isaki,et al. Variance Estimation Using Auxiliary Information , 1983 .
[15] H. Robinson. Principles and Procedures of Statistics , 1961 .
[16] A. R. Sen. Estimation of the population mean when the coefficient of variation is known , 1978 .
[17] On the Estimation of the Population Mean with Known Coefficient of Variation , 1984 .
[18] Donald T. Searls,et al. The Utilization of a Known Coefficient of Variation in the Estimation Procedure , 1964 .
[19] Cem Kadilar,et al. Improvement in estimating the population mean in simple random sampling , 2006, Appl. Math. Lett..