From local features to local regions

Local features are omnipresent in computer vision applications and an important building block for applications like object recognition and image retrieval. Such applications often involve feature matching or use an inverted index to efficiently retrieve similar local features for a given query. In such cases it is commonly known that local features are often not informative yielding mismatches and false positives when used for feature matching (see Figure 1)or retrieval. As a result retrieval systems employ expensive post-retrieval verification steps. These observations underline the importance of embedding spatial information of a local image region directly within the index to decrease the number of false positives upon retrieval. We present our latest method for embedding spatial information into an index by bundling local feature triples for logo recognition. We give an overview of our feature representation, describe currently ongoing research and pose open questions for discussion.

[1]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[2]  M. Rukoz,et al.  Embedding spatial information into image content description for scene retrieval , 2010, Pattern Recognit..

[3]  Rainer Lienhart,et al.  Scalable logo recognition in real-world images , 2011, ICMR.

[4]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[5]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[6]  Haim J. Wolfson,et al.  Geometric hashing: an overview , 1997 .

[7]  Michael Isard,et al.  General Theory , 1969 .

[8]  Tinne Tuytelaars,et al.  Dense interest points , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Michael Isard,et al.  Partition Min-Hash for Partial Duplicate Image Discovery , 2010, ECCV.

[10]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[11]  Ying Wu,et al.  Spatial Random Partition for Common Visual Pattern Discovery , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[12]  Changhu Wang,et al.  Spatial-bag-of-features , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Jiri Matas,et al.  Geometric min-Hashing: Finding a (thick) needle in a haystack , 2009, CVPR.

[14]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Jiri Matas,et al.  Locally Optimized RANSAC , 2003, DAGM-Symposium.

[17]  Gang Hua,et al.  Building contextual visual vocabulary for large-scale image applications , 2010, ACM Multimedia.

[18]  Michael Isard,et al.  Bundling features for large scale partial-duplicate web image search , 2009, CVPR.

[19]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[20]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[21]  Yannis Avrithis,et al.  Feature map hashing: sub-linear indexing of appearance and global geometry , 2010, ACM Multimedia.