A novel catalyst Pd@ompg-C3N4 for highly chemoselective hydrogenation of quinoline under mild conditions

[1]  Belinda S. Akpa,et al.  Solvent effects in the hydrogenation of 2-butanone , 2012 .

[2]  Yong Wang,et al.  Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. , 2012, Angewandte Chemie.

[3]  Merlín Rosales,et al.  Kinetics and Mechanisms of Homogeneous Catalytic Reactions. Part 11. Regioselective Hydrogenation of Quinoline Catalyzed by Rhodium Systems Containing 1,2-Bis(diphenylphosphino)ethane , 2011 .

[4]  M. Antonietti,et al.  Visible‐Light‐Induced Metal‐Free Allylic Oxidation Utilizing a Coupled Photocatalytic System of g‐C3N4 and N‐Hydroxy Compounds , 2011 .

[5]  B. Shi,et al.  Catalytic hydrogenation of quinoline over recyclable palladium nanoparticles supported on tannin grafted collagen fibers , 2011 .

[6]  Scott J. Miller,et al.  Iridium-catalyzed hydrogenation of N-heterocyclic compounds under mild conditions by an outer-sphere pathway. , 2011, Journal of the American Chemical Society.

[7]  M. Antonietti,et al.  Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. , 2011, Journal of the American Chemical Society.

[8]  M. Antonietti,et al.  Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C–H bond oxidation , 2011 .

[9]  E. Haque,et al.  Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol , 2010 .

[10]  J. Figueiredo,et al.  Oxygen activation sites in gold and iron catalysts supported on carbon nitride and activated carbon , 2010 .

[11]  M. Antonietti,et al.  Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids , 2010 .

[12]  K. Jitsukawa,et al.  Fine Tuning of Pd0 Nanoparticle Formation on Hydroxyapatite and Its Application for Regioselective Quinoline Hydrogenation , 2010 .

[13]  M. Antonietti,et al.  Boron- and fluorine-containing mesoporous carbon nitride polymers: metal-free catalysts for cyclohexane oxidation. , 2010, Angewandte Chemie.

[14]  M. Antonietti,et al.  Mesoporous, 2D Hexagonal Carbon Nitride and Titanium Nitride/Carbon Composites , 2009 .

[15]  A. Vinu,et al.  Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content: a metal-free basic catalyst. , 2009, Angewandte Chemie.

[16]  M. Antonietti,et al.  Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light , 2009 .

[17]  Yanmei He,et al.  Highly enantioselective hydrogenation of quinolines under solvent-free or highly concentrated conditions , 2009 .

[18]  K. Fujita,et al.  Homogeneous catalytic system for reversible dehydrogenation-hydrogenation reactions of nitrogen heterocycles with reversible interconversion of catalytic species. , 2009, Journal of the American Chemical Society.

[19]  K. Okano,et al.  A mild inter- and intramolecular amination of aryl halides with a combination of CuI and CsOAc , 2008 .

[20]  R. Schlögl,et al.  Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts , 2008 .

[21]  K. Wilson,et al.  The influence of surface functionalization of activated carbon on palladium dispersion and catalytic activity in hydrogen oxidation , 2008 .

[22]  R. Sánchez-Delgado,et al.  Hydrogenation of quinoline by ruthenium nanoparticles immobilized on poly(4-vinylpyridine). , 2007, Catalysis communications.

[23]  Yong‐Gui Zhou Asymmetric hydrogenation of heteroaromatic compounds. , 2007, Accounts of chemical research.

[24]  Xiuwen Han,et al.  An efficient catalytic system for the hydrogenation of quinolines , 2007 .

[25]  V. Dubois,et al.  Nanostructured Pd/C catalysts prepared by grafting of model carboxylate complexes onto functionalized carbon , 2006 .

[26]  M. Vannice,et al.  Solvent effects in liquid-phase reactions: I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects , 2006 .

[27]  M. Antonietti,et al.  Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. , 2006, Angewandte Chemie.

[28]  Xiuwen Han,et al.  Asymmetric Hydrogenation of Quinolines Catalyzed by Iridium with Chiral Ferrocenyloxazoline Derived N,P Ligands , 2004 .

[29]  L. Kiwi-Minsker,et al.  Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation , 2004 .

[30]  Merlín Rosales,et al.  Kinetics and mechanisms of homogeneous catalytic reactions. Part 5. Regioselective reduction of heteroaromatic nitrogen compounds catalysed by [OsH(CO)(NCMe)2(PPh3)2]BF4 , 2004 .

[31]  Xiuwen Han,et al.  Highly enantioselective iridium-catalyzed hydrogenation of heteroaromatic compounds, quinolines. , 2003, Journal of the American Chemical Society.

[32]  A. Spitaleri,et al.  Supported ruthenium nanoparticles on polyorganophosphazenes: preparation, structural and catalytic studies , 2003 .

[33]  R. Schneider,et al.  Efficient nickel-mediated intramolecular amination of aryl chlorides. , 2003, Organic letters.

[34]  A. Vaccari,et al.  Mild hydrogenation of quinoline: 2. A novel Rh-containing pillared layered clay catalyst , 2002 .

[35]  A. Vaccari,et al.  Mild hydrogenation of quinoline: 1. Role of reaction parameters , 2002 .

[36]  M. Busolo,et al.  Regioselective homogeneous hydrogenation of quinoline by use of pyrazolyl borate ligand and transition metal complexes as a precatalyst , 1999 .

[37]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[38]  A. Katritzky,et al.  Recent progress in the synthesis of 1,2,3,4,-tetrahydroquinolines , 1996 .

[39]  B. Chaudret,et al.  Kinetics and mechanism of the regioselective homogeneous hydrogenation of quinoline using [Rh(COD)(PPh3)2]PF6 as the catalyst precursor , 1993 .

[40]  I. Horváth,et al.  Homogeneous catalytic hydrogenation. 6. Synthetic and mechanistic aspects of the regioselective reductions of model coal nitrogen, sulfur, and oxygen heteroaromatic compounds using the (.eta.5-pentamethylcyclopentadienyl)rhodium tris(acetonitrile) dication complex as the catalyst precursor , 1992 .

[41]  H. Kim,et al.  Bonding of mono- and polynuclear heteroaromatic nitrogen ligands to the (.eta.5-pentamethylcyclopentadienyl)rhodium dication: structure-reactivity relationships in the formation of nitrogen (.eta.1) versus .pi.(.eta.5,.eta.6) complexes and competition studies of the ligands for the rhodium metal cen , 1991 .

[42]  J. N. Michaels,et al.  Gas-phase hydrodenitrogenation reactions of polynuclear heteroaromatic nitrogen compounds and selected intermediates with a 50% nickel oxide/aluminate supported on s silica-alumina catalyst*1 , 1990 .

[43]  R. Taft,et al.  Solvent effects in organic chemistry — recent developments , 1988 .

[44]  T. Miyazaki,et al.  Organoaluminum-promoted Beckmann rearrangement of oxime sulfonates , 1983 .

[45]  R. Fish,et al.  Homogeneous catalytic hydrogenation. 1. Regiospecific reductions of polynuclear aromatic and polynuclear heteroaromatic nitrogen compounds catalyzed by transition metal carbonyl hydrides , 1982 .

[46]  V. Likholobov,et al.  Palladium catalysts on activated carbon supports: Influence of reduction temperature, origin of the support and pretreatments of the carbon surface , 2000 .

[47]  P. Ornstein,et al.  An improved synthesis of homoproline and derivatives , 1990 .

[48]  R. A. Rajadhyaksha,et al.  Solvent effects in catalytic hydrogenation , 1986 .