Molecular cloning and characterization of 13 out genes from Erwinia carotovora subspecies carotovora: genes encoding members of a general secretion pathway (GSP) widespread in Gram‐negative bacteria

The chemical mutagen ethylmethanesulphonate (EMS) has been used to generate mutants of Erwinia carotovora subspecies carotovora which are defective in the secretion of pectinases (Pel) and cellulases (Cel) but unaltered for protease (Prt) secretion. Such mutants, called Out− still synthesize Pel and Cel but these enzymes accumulate within the periplasm. Cosmid clones carrying wild‐type E. carotovra ssp. carotovora DNA, identified by their ability to restore the Out+ phenotype when transferred to some Out− mutants, were classified into six complementation groups using cosmids and cosmid derivatives. Analysis of the nucleotide sequence of a 12.7 kb DNA fragment, encompassing complementing cosmid inserts, revealed a coding capacity for 13 potential open reading frames (ORFs), and these were designated outC‐outO. Some of the out gene products were visualized using a T7 gene 10 expression system. The predicted Out proteins are highly similar to components of extracellular enzyme secretion systems from a diverse range of eubacteria including Erwinia chrysanthemi, Klebsiella oxytoca, Aeromonas hydrophila, Pseudomonas aeruginosa and Xanthomonas campestris. Lower levels of similarity exist between Ecc Out proteins and components of macromolecular trafficking systems from Bacillus subtilis, Haemophilus influenzae, Agrobacterium tumefaciens, Yersinia pestis and a protein involved in the morphogenesis of filamentous bacteriophages such as M13.

[1]  C. Wandersman Secretion across the bacterial outer membrane. , 1992, Trends in genetics : TIG.

[2]  J. Tommassen,et al.  Protein secretion in Pseudomonas aeruginosa: characterization of seven xcp genes and processing of secretory apparatus components by prepilin peptidase , 1992 .

[3]  B. Jiang,et al.  The Aeromonas hydrophila exeE gene, required both for protein secretion and normal outer membrane biogenesis, is a member of a general secretion pathway , 1992, Molecular microbiology.

[4]  F. Tang,et al.  Cloning and characterization of a gene required for the secretion of extracellular enzymes across the outer membrane by Xanthomonas campestris pv. campestris , 1992, Journal of bacteriology.

[5]  B. Dupuy,et al.  An enzyme with type IV prepilin peptidase activity is required to process components of the general extracellular protein secretion pathway of Klebsiella oxytoca , 1992, Molecular microbiology.

[6]  C. d’Enfert,et al.  Pullulanase secretion in Escherichia coli K‐12 requires a cytoplasmic protein and a putative polytopic cytoplasmic membrane protein , 1992, Molecular microbiology.

[7]  J. Seyer,et al.  Processing of TCP pilin by TcpJ typifies a common step intrinsic to a newly recognized pathway of extracellular protein secretion by gram-negative bacteria. , 1991, Genes & development.

[8]  P. Reeves Molecular genetic analysis of extracellular enzyme secretion by Erwinia carotovora , 1991 .

[9]  G. Cornelis,et al.  Analysis of virC, an operon involved in the secretion of Yop proteins by Yersinia enterocolitica , 1991, Journal of bacteriology.

[10]  J. Tomb,et al.  Nucleotide sequence of a cluster of genes involved in the transformation of Haemophilus influenzae Rd. , 1991, Gene.

[11]  J. Mattick,et al.  Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. , 1991, Gene.

[12]  S. Lory,et al.  Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Pugsley,et al.  Two distinct steps in pullulanase secretion by Escherichia coli K12 , 1991, Molecular microbiology.

[14]  S. He,et al.  Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Bally,et al.  Protein secretion in Pseudomonas aeruginosa: the xcpA gene encodes an integral inner membrane protein homologous to Klebsiella pneumoniae secretion function protein PulO , 1991, Journal of bacteriology.

[16]  P. R. Sibbald,et al.  The P-loop--a common motif in ATP- and GTP-binding proteins. , 1990, Trends in biochemical sciences.

[17]  A. Collmer,et al.  Characterization of transposon insertion out- mutants of Erwinia carotovora subsp. carotovora defective in enzyme export and of a DNA segment that complements out mutations in E. carotovora subsp. carotovora, E. carotovora subsp. atroseptica, and Erwinia chrysanthemi , 1990, Journal of bacteriology.

[18]  S. Lory,et al.  Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili , 1990, Journal of bacteriology.

[19]  A. Pugsley,et al.  Five genes at the 3′ end of the Klebsiella pneumoniae pulC operon are required for pullulanase secretion , 1990, Molecular microbiology.

[20]  M. Russel,et al.  Secretion and membrane integration of a filamentous phage-encoded morphogenetic protein. , 1990, Journal of molecular biology.

[21]  P. Model,et al.  Phage shock protein, a stress protein of Escherichia coli. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. Ogierman,et al.  Nucleotide sequence of the structural gene, tcpA, for a major pilin subunit of Vibrio cholerae. , 1989, Gene.

[23]  M. Gordon,et al.  A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. Dubnau,et al.  Molecular cloning and characterization of comC, a late competence gene of Bacillus subtilis , 1989, Journal of bacteriology.

[25]  C. d’Enfert,et al.  Protein secretion by gram-negative bacteria. Characterization of two membrane proteins required for pullulanase secretion by Escherichia coli K-12. , 1989, The Journal of biological chemistry.

[26]  D. Dubnau,et al.  Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon , 1989, Journal of bacteriology.

[27]  C. d’Enfert,et al.  Klebsiella pneumoniae pulS gene encodes an outer membrane lipoprotein required for pullulanase secretion , 1989, Journal of bacteriology.

[28]  K. Struhl Helix-turn-helix, zinc-finger, and leucine-zipper motifs for eukaryotic transcriptional regulatory proteins. , 1989, Trends in biochemical sciences.

[29]  A. Datta,et al.  Characterization of the virB operon from an Agrobacterium tumefaciens Ti plasmid. , 1988, The Journal of biological chemistry.

[30]  C. d’Enfert,et al.  Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase. , 1987, The EMBO journal.

[31]  J. M. Dow,et al.  A gene cluster in Xanthomonas campestris pv. campestris required for pathogenicity controls the excretion of polygalacturonate lyase and other enzymes , 1987 .

[32]  G. Salmond,et al.  Use of TnphoA to enrich for extracellular enzyme mutants of Erwinia carotovora subspecies carotovora , 1987, Molecular microbiology.

[33]  N. Hugouvieux-Cotte-Pattat,et al.  Use of Mu-lac Insertions to Study the Secretion of Pectate Lyases by Erwinia chrysanthemi , 1987 .

[34]  M. Pérombelon,et al.  Chromosomal mapping in Erwinia carotovora subsp. carotovora with the IncP plasmid R68::Mu , 1985, Journal of bacteriology.

[35]  A. Chatterjee,et al.  Single-site chromosomal Tn5 insertions affect the export of pectolytic and cellulolytic enzymes in Erwinia chrysanthemi EC16 , 1985, Applied and environmental microbiology.

[36]  J. McEvoy,et al.  pULB113, an RP4::mini-Mu plasmid, mediates chromosomal mobilization and R-prime formation in Erwinia amylovora, Erwinia chrysanthemi, and subspecies of Erwinia carotovora , 1985, Applied and environmental microbiology.

[37]  J. Rosenbusch,et al.  Secondary structure of a channel‐forming protein: porin from E. coli outer membranes. , 1985, The EMBO journal.

[38]  C. Richardson,et al.  A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Kotoujansky,et al.  Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase , 1984, Journal of bacteriology.

[40]  V. Iyer,et al.  A portable DNA sequence carrying the cohesive site (cos) of bacteriophage lambda and the mob (mobilization) region of the broad-host-range plasmid RK2: a module for the construction of new cosmids. , 1984, Gene.

[41]  J. Devereux,et al.  A comprehensive set of sequence analysis programs for the VAX , 1984, Nucleic Acids Res..

[42]  C. Queen,et al.  A comprehensive sequence analysis program for the IBM personal computer , 1984, Nucleic Acids Res..

[43]  D. Hanahan Studies on transformation of Escherichia coli with plasmids. , 1983, Journal of molecular biology.

[44]  H. Klee,et al.  In vivo packaging of cosmids in transposon-mediated mutagenesis , 1983, Journal of bacteriology.

[45]  H. L. Martin,et al.  APPLICATION OF A RADIAL DIFFUSION ASSAY FOR THE MEASUREMENT OF β-GLUCANASE IN MALT , 1983 .

[46]  J. Walker,et al.  Distantly related sequences in the alpha‐ and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. , 1982, The EMBO journal.

[47]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[48]  E. Beck,et al.  Nucleotide sequence and genome organisation of filamentous bacteriophages f1 and fd , 1981 .

[49]  B. Hohn,et al.  A small cosmid for efficient cloning of large DNA fragments. , 1980, Gene.

[50]  P M van Wezenbeek,et al.  Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: comparison with phage fd. , 1980, Gene.

[51]  and M C M Perombelon,et al.  Ecology of the Soft Rot Erwinias , 1980 .

[52]  K. Chen,et al.  Neisseria pili proteins: amino-terminal amino acid sequences and identification of an unusual amino acid. , 1978, Biochemistry.

[53]  F. Bolivar,et al.  Construction and characterization of new cloning vehicles. I. Ampicillin-resistant derivatives of the plasmid pMB9. , 1977, Gene.

[54]  S. Falkow,et al.  Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. , 1977, Gene.

[55]  J. T. Grace STUDIES OF EPSTEIN‐BARR VIRUS , 1970, Annals of the New York Academy of Sciences.

[56]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[57]  Philip J. Reeves,et al.  Membrance traffic wardens and protein secretion in Gram-negative bacteria , 1993 .

[58]  G. Salmond,et al.  Membrane traffic wardens and protein secretion in gram-negative bacteria. , 1993, Trends in biochemical sciences.

[59]  J. Berg,et al.  Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[60]  A. Bankier,et al.  Random cloning and sequencing by the M13/dideoxynucleotide chain termination method. , 1987, Methods in enzymology.

[61]  A. Kotoujansky Molecular Genetics of Pathogenesis by Soft-Rot Erwinias , 1987 .

[62]  A. Vidaver,et al.  Genetics of pathogenicity factors : application to phytopathogenic bactreria , 1986 .

[63]  P. Biely,et al.  Soluble chromogenic substrates for the assay of endo-1,4-β-xylanases and endo-1,4-β-glucanases , 1985 .

[64]  P. Biely,et al.  Soluble chromogenic substrates for the assay of endo-1,4-beta-xylanases and endo-1,4-beta-glucanases. , 1985, Analytical biochemistry.

[65]  T. Silhavy,et al.  Genetic analysis of protein export in Escherichia coli K12. , 1985, Annual review of biochemistry.

[66]  J. Beckwith,et al.  Genetic analysis of protein export in Escherichia coli. , 1983, Methods in enzymology.

[67]  G. Klein Studies on the Epstein-Barr Virus genome and the EBV-determined nuclear antigen in human malignant disease. , 1975, Cold Spring Harbor symposia on quantitative biology.

[68]  R. Munson,et al.  [67] Separation of the inner (cytoplasmic) and outer membranes of gram-negative bacteria , 1974 .