Random Eigenvalue Problems in Structural Dynamics

Dynamic characteristics of linear structural systems are governed by the natural frequencies and the mode-shapes. In this paper moments and probability density functions of the eigenvalues of linear stochastic dynamic systems are considered. It is assumed that the mass and the stiffness matrices are smooth and at least twice differentiable functions of a random parameter vector. The random parameter vector is assumed to be non-Gaussian in general. Current methods to solve such problems are dominated by perturbation based methods. Here a new approach based on an asymptotic approximation of the multidimensional integrals is proposed. A closedform expression is derived for a general rth order moment of the eigenvalues. Two approaches are presented to obtain the probability density functions of the eigenvalues. The first is based on the maximum entropy method and the second is based on fitting of a chi-square random variable. Both approaches result in simple closedform expressions which can be easily calculated. The proposed methods are applied to a three degrees-of-freedom spring-mass system and the results are compared with Monte Carlo simulations. Two different cases, namely (a) when all eigenvalues are well separated, and (b) when some eigenvalues are closely spaced, are considered to illustrate some inherent properties of the methodologies proposed in the paper.

[1]  J. D. Collins,et al.  The eigenvalue problem for structural systems with statistical properties. , 1969 .

[2]  Z. Qiu,et al.  Stochastic sensitivity analysis of eigenvalues and eigenvectors , 1995 .

[3]  Andy J. Keane,et al.  An approximate solution scheme for the algebraic random Eigenvalue problem , 2003 .

[4]  Roderick Wong,et al.  Asymptotic approximations of integrals , 1989, Classics in applied mathematics.

[5]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[6]  R. Wunderlich,et al.  Random Eigenvalue Problems for Bending Vibrations of Beams , 1999 .

[7]  C. S. Manohar,et al.  Progress in structural dynamics with stochastic parameter variations: 1987-1998 , 1999 .

[8]  A. M. Mathai Quadratic forms in random variables , 1992 .

[9]  Haym Benaroya,et al.  Random eigenvalues, algebraic methods and structural dynamic models , 1992 .

[10]  C. S. Manohar,et al.  Transient Dynamics of Stochastically Parametered Beams , 2000 .

[11]  R. Ibrahim Structural Dynamics with Parameter Uncertainties , 1987 .

[12]  Martin Hála Method of Ritz for random eigenvalue problems , 1994, Kybernetika.

[13]  Raymond H. Plaut,et al.  Derivatives of eigenvalues and eigenvectors in non-self-adjoint systems. , 1973 .

[14]  Sondipon Adhikari,et al.  Modal Analysis of Linear Asymmetric Nonconservative Systems , 1999 .

[15]  Haym Benaroya,et al.  Finite Element Methods in Probabilistic Structural Analysis: A Selective Review , 1988 .

[16]  Frank Fahy,et al.  Foundations of engineering acoustics , 2000 .

[17]  S. Adhikari Complex modes in stochastic systems , 2004 .

[18]  E. S. Pearson Note on an Approximation to the Distribution of Non-Central χ 2 , 1959 .

[19]  B. Ellingwood,et al.  Initialization Strategies in Simulation‐Based SFE Eigenvalue Analysis , 2005 .

[20]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[21]  S. Adhikari Joint Distribution of Eigenvalues of Linear Stochastic Systems , 2005 .

[22]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[23]  Rajamohan Ganesan,et al.  A Galerkin finite element technique for stochastic field problems , 1993 .

[24]  C. S. Manohar,et al.  Dynamic stiffness of randomly parametered beams , 1998 .

[25]  Roger Ghanem,et al.  Analysis of Eigenvalues and Modal Interaction of Stochastic Systems , 2005 .

[26]  S. Adhikari,et al.  Distribution of Eigenvalues of Linear Stochastic Systems , 2002 .

[27]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[28]  Robert J. Bernhard,et al.  Measurement of the Statistical Variation of Structural-Acoustic Characteristics of Automotive Vehicles , 1993 .

[29]  R. Ganesan,et al.  Stability analysis of a stochastic column subjected to stochastically distributed loadings using the finite element method , 1992 .

[30]  Gary C. Hart,et al.  Modal Analysis of Random Structural Systems , 1972 .

[31]  A. M. Mathai,et al.  Quadratic forms in random variables : theory and applications , 1992 .

[32]  R. Ganesan,et al.  Parametric instability of stochastic columns , 1993 .

[33]  Achintya Haldar,et al.  Reliability Assessment Using Stochastic Finite Element Analysis , 2000 .

[34]  Sondipon Adhikari,et al.  Experimental Data for Uncertainty Quantification , 2005 .

[35]  S. Adhikari COMPLEX MODES IN LINEAR STOCHASTIC SYSTEMS , 2000 .

[36]  Jean-Pierre Coyette,et al.  Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties , 2003 .

[37]  R. Ibrahim,et al.  PROGRESS IN STRUCTURAL DYNAMICS WITH STOCHASTIC PARAMETER VARIATIONS : 1987 to 1996 C , 2005 .

[38]  Michael I. Friswell,et al.  The Derivatives of Repeated Eigenvalues and Their Associated Eigenvectors , 1996 .

[39]  J. Beck,et al.  Asymptotic Expansions for Reliability and Moments of Uncertain Systems , 1997 .

[40]  T. S. Sankar,et al.  Stochastic Finite Element Analysis for High Speed Rotors , 1993 .

[41]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[42]  D. Dawe,et al.  Matrix and finite element displacement analysis of structures , 1984 .

[43]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[44]  Sondipon Adhikari,et al.  Lancaster’s Method of Damping Identification Revisited , 2002 .

[45]  R. Fox,et al.  Rates of change of eigenvalues and eigenvectors. , 1968 .

[46]  G. Schuëller,et al.  Random eigenvalue problems for large systems , 2002 .

[47]  Rajendra Singh,et al.  Analysis Of Discrete Vibratory Systems With Parameter Uncertainties, Part II: Impulse Response , 1994 .

[48]  Charlotte Hagberg,et al.  Modeling and Evaluation of the LCD-System , 2006 .

[49]  G. S. Szekely,et al.  Computational procedure for a fast calculation of eigenvectors and eigenvalues of structures with random properties , 2001 .

[50]  J. Scheidt,et al.  Random Eigenvalue Problems , 1983 .

[51]  R. Ganesan,et al.  Stability of stochastic Leipholz column with stochastic loading , 1992 .

[52]  C. S. Manohar,et al.  DYNAMIC ANALYSIS OF FRAMED STRUCTURES WITH STATISTICAL UNCERTAINTIES , 1999 .