The emerging regulatory roles of long non-coding RNAs implicated in cancer metabolism.

[1]  J. Mendell,et al.  A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming , 2020, Science.

[2]  D. Bartel,et al.  The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation , 2020, Science.

[3]  Xingjing Luo,et al.  Upregulated Long Noncoding RNA UCA1 Enhances Warburg Effect via miR-203/HK2 Axis in Esophagal Cancer , 2020, Journal of oncology.

[4]  H. Cui,et al.  Aberrant NSUN2-mediated m5C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma , 2020, Oncogene.

[5]  Xiaodong Yu,et al.  LINC00346 regulates glycolysis by modulation of glucose transporter 1 in breast cancer cells. , 2020, Molecular and cellular probes.

[6]  Shuo Gu,et al.  AGO-bound mature miRNAs are oligouridylated by TUTs and subsequently degraded by DIS3L2 , 2020, Nature Communications.

[7]  Liuqing Yang,et al.  Long noncoding RNA loss in immune suppression in cancer. , 2020, Pharmacology & therapeutics.

[8]  Weifeng He,et al.  The role of long noncoding RNAs in hepatocellular carcinoma , 2020, Molecular Cancer.

[9]  A. Contreras-Paredes,et al.  Non-Coding RNAs as Key Regulators of Glutaminolysis in Cancer , 2020, International journal of molecular sciences.

[10]  Li Zhao,et al.  Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis , 2020, Theranostics.

[11]  De-sheng Wang,et al.  Long noncoding RNA SLC2A1‐AS1 regulates aerobic glycolysis and progression in hepatocellular carcinoma via inhibiting the STAT3/FOXM1/GLUT1 pathway , 2020, Molecular oncology.

[12]  Yang Wang,et al.  ALKBH5-mediated m6A demethylation of lncRNA PVT1 plays an oncogenic role in osteosarcoma , 2020, Cancer Cell International.

[13]  F. Slack,et al.  The Role of Non-coding RNAs in Oncology , 2019, Cell.

[14]  B. He,et al.  LncRNA SNHG16 induces the SREBP2 to promote lipogenesis and enhance the progression of pancreatic cancer. , 2019, Future oncology.

[15]  Jian-Ting Shi,et al.  Long non-coding RNA LINC00174 promotes glycolysis and tumor progression by regulating miR-152-3p/SLC2A1 axis in glioma , 2019, Journal of Experimental & Clinical Cancer Research.

[16]  J. Steitz,et al.  Structural Basis for Target-Directed MicroRNA Degradation. , 2019, Molecular cell.

[17]  Yun Cui,et al.  LncRNA GLCC1 promotes colorectal carcinogenesis and glucose metabolism by stabilizing c-Myc , 2019, Nature Communications.

[18]  Jing Li,et al.  Regulatory roles of long noncoding RNAs implicated in cancer hallmarks , 2019, International journal of cancer.

[19]  Z. Cai,et al.  LincRNA-p21 suppresses glutamine catabolism and bladder cancer cell growth through inhibiting glutaminase expression , 2019, Bioscience reports.

[20]  Juan Li,et al.  Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer , 2019, Molecular Cancer.

[21]  A. Levin Treating Disease at the RNA Level with Oligonucleotides. , 2019, The New England journal of medicine.

[22]  Chun-you Wang,et al.  Nutrient Stress-Dysregulated Antisense lncRNA GLS-AS Impairs GLS-Mediated Metabolism and Represses Pancreatic Cancer Progression. , 2018, Cancer research.

[23]  Xi Zhang,et al.  The LINC01138 interacts with PRMT5 to promote SREBP1-mediated lipid desaturation and cell growth in clear cell renal cell carcinoma. , 2018, Biochemical and biophysical research communications.

[24]  Hui Liu,et al.  Long non-coding RNAs involved in cancer metabolic reprogramming , 2018, Cellular and Molecular Life Sciences.

[25]  Tong Wu,et al.  LncRNA-p23154 promotes the invasion-metastasis potential of oral squamous cell carcinoma by regulating Glut1-mediated glycolysis. , 2018, Cancer letters.

[26]  Takahashi Nobuhiro,et al.  SAMMSON fosters cancer cell fitness by enhancing concertedly mitochondrial and cytosolic translation , 2018, Nature structural & molecular biology.

[27]  Yan Shi,et al.  Long non‐coding RNA HOTAIR acts as a competing endogenous RNA to promote glioma progression by sponging miR‐126‐5p , 2018, Journal of cellular physiology.

[28]  Midie Xu,et al.  Emerging roles of long non-coding RNAs in tumor metabolism , 2018, Journal of Hematology & Oncology.

[29]  Chunxian Huang,et al.  Long non‑coding RNA urothelial cancer associated 1 regulates radioresistance via the hexokinase 2/glycolytic pathway in cervical cancer. , 2018, International journal of molecular medicine.

[30]  Y. Zhang,et al.  Knockdown of LncRNA‐UCA1 suppresses chemoresistance of pediatric AML by inhibiting glycolysis through the microRNA‐125a/hexokinase 2 pathway , 2018, Journal of cellular biochemistry.

[31]  Bo Zhang,et al.  Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular carcinoma proliferation , 2018, Molecular Cancer.

[32]  Xiangchou Yang,et al.  LncRNA PDIA3P interacts with c-Myc to regulate cell proliferation via induction of pentose phosphate pathway in multiple myeloma. , 2018, Biochemical and biophysical research communications.

[33]  David P. Bartel,et al.  A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain , 2018, Cell.

[34]  D. Spector,et al.  Therapeutic Targeting of Long Non-Coding RNAs in Cancer. , 2018, Trends in molecular medicine.

[35]  Hsiang-Cheng Chi,et al.  Taurine up‐regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma , 2018, Hepatology.

[36]  Huan Pang,et al.  LncRNA UCA1 Promotes Mitochondrial Function of Bladder Cancer via the MiR-195/ARL2 Signaling Pathway , 2017, Cellular Physiology and Biochemistry.

[37]  Guoxing Chen,et al.  LncRNA TUG1 sponges miR-145 to promote cancer progression and regulate glutamine metabolism via Sirt3/GDH axis , 2017, Oncotarget.

[38]  Guang-Rong Yan,et al.  A Peptide Encoded by a Putative lncRNA HOXB-AS3 Suppresses Colon Cancer Growth. , 2017, Molecular cell.

[39]  J. Gu,et al.  Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development , 2017, Nature Communications.

[40]  Xiaodong Zhang,et al.  Promotion of glycolysis by HOTAIR through GLUT1 upregulation via mTOR signaling. , 2017, Oncology reports.

[41]  B. Wang,et al.  Long non-coding RNA PVT1 promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in osteosarcoma. , 2017, Biochemical and biophysical research communications.

[42]  Z. Zeng,et al.  Role of long non-coding RNAs in glucose metabolism in cancer , 2017, Molecular Cancer.

[43]  S. Venneti,et al.  Glutaminolysis: A Hallmark of Cancer Metabolism. , 2017, Annual review of biomedical engineering.

[44]  Zheng Li,et al.  CCAT2: A novel oncogenic long non‐coding RNA in human cancers , 2017, Cell proliferation.

[45]  M. Banach,et al.  Relationship between long noncoding RNAs and physiological risk factors of cardiovascular disease. , 2017, Journal of clinical lipidology.

[46]  Weifen Li,et al.  Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production , 2016, Applied Microbiology and Biotechnology.

[47]  Yuquan Wei,et al.  Long Noncoding RNA LINC00092 Acts in Cancer-Associated Fibroblasts to Drive Glycolysis and Progression of Ovarian Cancer. , 2017, Cancer research.

[48]  J. Rinn,et al.  Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs , 2016, bioRxiv.

[49]  C. Dang,et al.  From Krebs to clinic: glutamine metabolism to cancer therapy , 2016, Nature Reviews Cancer.

[50]  Jakob Skou Pedersen,et al.  SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism , 2016, Molecular oncology.

[51]  W. Zhang,et al.  LncRNA ANRIL is up-regulated in nasopharyngeal carcinoma and promotes the cancer progression via increasing proliferation, reprograming cell glucose metabolism and inducing side-population stem-like cancer cells , 2016, Oncotarget.

[52]  Roderic Guigó,et al.  Cytoplasmic long noncoding RNAs are frequently bound to and degraded at ribosomes in human cells , 2016, RNA.

[53]  Stefan Van Aelst,et al.  Melanoma addiction to the long non-coding RNA SAMMSON , 2016, Nature.

[54]  Prashant Mishra,et al.  Metabolic regulation of mitochondrial dynamics , 2016, The Journal of cell biology.

[55]  C. Thompson,et al.  The Emerging Hallmarks of Cancer Metabolism. , 2016, Cell metabolism.

[56]  S. Beloribi-Djefaflia,et al.  Lipid metabolic reprogramming in cancer cells , 2016, Oncogenesis.

[57]  A. Krainer,et al.  Abstract PR11: Differentiation of mammary tumors and reduction in metastasis upon Malat1 LncRNA loss , 2016 .

[58]  Huan Pang,et al.  Long non-coding RNA UCA1 promotes glutamine metabolism by targeting miR-16 in human bladder cancer. , 2015, Japanese journal of clinical oncology.

[59]  Flore Kruiswijk,et al.  p53 in survival, death and metabolic health: a lifeguard with a licence to kill , 2015, Nature Reviews Molecular Cell Biology.

[60]  Yue Wang,et al.  Long noncoding RNA HULC modulates abnormal lipid metabolism in hepatoma cells through an miR-9-mediated RXRA signaling pathway. , 2015, Cancer research.

[61]  Robert A. Egnatchik,et al.  Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. , 2015, Cancer cell.

[62]  Vikram Agarwal,et al.  Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. , 2014, Molecular cell.

[63]  Phillip D Zamore,et al.  Competitive endogenous RNAs cannot alter microRNA function in vivo. , 2014, Molecular cell.

[64]  Fan Yang,et al.  Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. , 2014, Molecular cell.

[65]  Xuefei Shi,et al.  Long non-coding RNAs: a new frontier in the study of human diseases. , 2013, Cancer letters.

[66]  Ralph J DeBerardinis,et al.  Glutamine and cancer: cell biology, physiology, and clinical opportunities. , 2013, The Journal of clinical investigation.

[67]  J. Foekens,et al.  CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer , 2013, Genome research.

[68]  David Tollervey,et al.  A Transcriptome-wide Atlas of RNP Composition Reveals Diverse Classes of mRNAs and lncRNAs , 2013, Cell.

[69]  M. Akram,et al.  Mini-review on Glycolysis and Cancer , 2013, Journal of Cancer Education.

[70]  C. Wahlestedt Targeting long non-coding RNA to therapeutically upregulate gene expression , 2013, Nature Reviews Drug Discovery.

[71]  Denise P Barlow,et al.  Gene regulation by the act of long non-coding RNA transcription , 2013, BMC Biology.

[72]  Howard Y. Chang,et al.  Long Noncoding RNAs: Cellular Address Codes in Development and Disease , 2013, Cell.

[73]  David R. Kelley,et al.  Long noncoding RNAs regulate adipogenesis , 2013, Proceedings of the National Academy of Sciences.

[74]  D. Spector,et al.  The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. , 2013, Cancer research.

[75]  R. Spizzo,et al.  Long non-coding RNAs and cancer: a new frontier of translational research? , 2012, Oncogene.

[76]  D. Wallace Mitochondria and cancer , 2012, Nature Reviews Cancer.

[77]  J. Mattick,et al.  Genome-wide analysis of long noncoding RNA stability , 2012, Genome research.

[78]  T. Balon SGLT and GLUT: are they teammates? Focus on "Mouse SGLT3a generates proton-activated currents but does not transport sugar". , 2012, American journal of physiology. Cell physiology.

[79]  J. Rinn,et al.  Modular regulatory principles of large non-coding RNAs , 2012, Nature.

[80]  Jørgen Kjems,et al.  miRNA‐dependent gene silencing involving Ago2‐mediated cleavage of a circular antisense RNA , 2011, The EMBO journal.

[81]  P. Pandolfi,et al.  A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? , 2011, Cell.

[82]  S. Loeillet,et al.  XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast , 2011, Nature.

[83]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[84]  T. Mak,et al.  Regulation of cancer cell metabolism , 2011, Nature Reviews Cancer.

[85]  I. Gérin,et al.  Multiple Roles for the Non-Coding RNA SRA in Regulation of Adipogenesis and Insulin Sensitivity , 2010, PloS one.

[86]  Jiayi Wang,et al.  CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer , 2010, Nucleic acids research.

[87]  R. Deberardinis,et al.  Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer , 2010, Oncogene.

[88]  Takeshi Kimura,et al.  MicroRNA-15b Modulates Cellular ATP Levels and Degenerates Mitochondria via Arl2 in Neonatal Rat Cardiac Myocytes* , 2009, The Journal of Biological Chemistry.

[89]  C. Dang,et al.  MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities , 2009, Clinical Cancer Research.

[90]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[91]  J. Mattick,et al.  Long non-coding RNAs: insights into functions , 2009, Nature Reviews Genetics.

[92]  C. Ponting,et al.  Evolution and Functions of Long Noncoding RNAs , 2009, Cell.

[93]  M.-H. Lee,et al.  Roles of p53, Myc and HIF-1 in Regulating Glycolysis — the Seventh Hallmark of Cancer , 2008, Cellular and Molecular Life Sciences.

[94]  M. Toledano,et al.  ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis , 2007, Nature Reviews Molecular Cell Biology.

[95]  Howard Y. Chang,et al.  Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs , 2007, Cell.

[96]  N. Hay,et al.  Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt , 2006, Oncogene.

[97]  Lois J. Maltais,et al.  Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family Published, JLR Papers in Press, August 1, 2004. DOI 10.1194/jlr.E400002-JLR200 , 2004, Journal of Lipid Research.

[98]  R. B. Rawson Control of lipid metabolism by regulated intramembrane proteolysis of sterol regulatory element binding proteins (SREBPs). , 2003, Biochemical Society symposium.

[99]  Marc Dellian,et al.  Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[100]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.

[101]  H. Krebs Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. , 1935, The Biochemical journal.

[102]  O. Warburg THE CHEMICAL CONSTITUTION OF RESPIRATION FERMENT. , 1928, Science.

[103]  Xiao Zhu,et al.  Long Noncoding RNAs: Advances in Lipid Metabolism. , 2018, Advances in clinical chemistry.

[104]  Hao Yang,et al.  SREBP1-driven lipid desaturation supports clear cell renal cell carcinoma growth through regulation of NF-κB signaling. , 2018, Biochemical and biophysical research communications.

[105]  S. Hanash,et al.  Allele-Specific Reprogramming of Cancer Metabolism by the Long Non-coding RNA CCAT2. , 2016, Molecular cell.

[106]  Huafeng Zhang,et al.  Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression , 2015, Cellular and Molecular Life Sciences.

[107]  Richard P. Hill,et al.  The hypoxic tumour microenvironment and metastatic progression , 2004, Clinical & Experimental Metastasis.

[108]  M. Watford,et al.  Regulation of glutaminase activity and glutamine metabolism. , 1995, Annual review of nutrition.