Adapting Color Difference for Design

CIELAB is commonly used in design as it provides a simple method for approximating color difference. However, these approximations model color perception under laboratory conditions, with correctly calibrated displays and carefully constrained viewing environments that are not reflective of complexity of viewing conditions encountered in the real world. In this paper, we present a data-driven engineering model for parametric color difference that extends CIELAB to be more broadly applicable to real-world conditions. Our model can be tuned to a desired range of viewers and conditions using a simple modeling procedure, while minimally increasing the complexity of the model. We demonstrate our approach empirically by modeling color differences for the web by leveraging crowdsourced participants.

[1]  Louis D. Silverstein,et al.  Size matters: Improved color‐difference estimation for small visual targets , 2010 .

[2]  Matthew Anderson,et al.  Proposal for a Standard Default Color Space for the Internet - sRGB , 1996, CIC.

[3]  Silvia Zuffi,et al.  Understanding the readability of colored text by crowd-sourcing on the Web , 2009 .

[4]  Roy S. Berns,et al.  Precision requirements for digital color reproduction , 1992, TOGS.

[5]  M. Luo,et al.  Effect of observer metamerism on colour matching of display and surface colours , 2008 .

[6]  A. Robertson Historical development of CIE recommended color difference equations , 1990 .

[7]  Wenjun Zeng,et al.  Image-adaptive watermarking using visual models , 1998, IEEE J. Sel. Areas Commun..

[8]  R. Berns,et al.  Image color-appearance specification through extension of CIELAB , 1993 .

[9]  E. Boring,et al.  Urban's Tables and the Method of Constant Stimuli , 1917 .

[10]  Changjun Li,et al.  The CIECAM02 Color Appearance Model , 2002, CIC.

[11]  Anders Hård,et al.  NCS—Natural Color System: A Swedish Standard for Color Notation , 1981 .

[12]  Jeffrey Heer,et al.  Color naming models for color selection, image editing and palette design , 2012, CHI.

[13]  Michael D. Buhrmester,et al.  Amazon's Mechanical Turk , 2011, Perspectives on psychological science : a journal of the Association for Psychological Science.

[14]  B H Crawford Colour matching and adaptation. , 1965, Vision research.

[15]  L. V. Eycken,et al.  Evaluation of Uniform Color Spaces Developed after the Adoption of CIELAB and CIELUV , 1994, Color Research & Application.

[16]  Maureen C. Stone Color Balancing Experimental Projection Displays , 2001, Color Imaging Conference.

[17]  M. Luo,et al.  The development of the CIE 2000 Colour Difference Formula , 2001 .

[18]  Samuel S. Silva,et al.  Using color in visualization: A survey , 2011, Comput. Graph..

[19]  Erik Reinhard,et al.  Visual calibration and correction for ambient illumination , 2006, TAP.

[20]  Mark D. Fairchild,et al.  Observer variability in metameric color matches using color reproduction media , 1997 .

[21]  Michael H. Brill,et al.  Color appearance models , 1998 .

[22]  Vidya Setlur,et al.  An Engineering Model for Color Difference as a Function of Size , 2014, CIC.

[23]  Patrick Le Callet,et al.  A color matching experiment using two displays: design considerations and pilot test results , 2010, CGIV/MCS.

[24]  Mahdi Nezamabadi,et al.  Color Appearance Models , 2014, J. Electronic Imaging.

[25]  L. Hardy,et al.  Tests for the Detection and Analysis of Color-Blindness. I. The Ishihara Test: An Evaluation , 1945 .