White Box Classification of Dissimilarity Data

While state-of-the-art classifiers such as support vector machines offer efficient classification for kernel data, they suffer from two drawbacks: the underlying classifier acts as a black box which can hardly be inspected by humans, and non-positive definite Gram matrices require additional preprocessing steps to arrive at a valid kernel. In this approach, we extend prototype-based classification towards general dissimilarity data resulting in a technology which (i) can deal with dissimilarity data characterized by an arbitrary symmetric dissimilarity matrix, (ii) offers intuitive classification in terms of prototypical class representatives, and (iii) leads to state-of-the-art classification results.

[1]  R. Duin,et al.  The dissimilarity representation for pattern recognition , a tutorial , 2009 .

[2]  Koby Crammer,et al.  Margin Analysis of the LVQ Algorithm , 2002, NIPS.

[3]  P. Grassberger,et al.  Sequence Alignment, Mutual Information, and Dissimilarity Measures for Constructing Phylogenies , 2010, PloS one.

[4]  Barbara Hammer,et al.  Topographic Mapping of Large Dissimilarity Data Sets , 2010, Neural Computation.

[5]  Maria Jesus Martin,et al.  The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 , 2003, Nucleic Acids Res..

[6]  E. Granum,et al.  Quantitative analysis of 6985 digitized trypsin G ‐banded human metaphase chromosomes , 1980, Clinical genetics.

[7]  Michael Biehl,et al.  Adaptive Relevance Matrices in Learning Vector Quantization , 2009, Neural Computation.

[8]  James J. Thomas,et al.  Defining Insight for Visual Analytics , 2009, IEEE Computer Graphics and Applications.

[9]  J. Stark,et al.  Network motifs: structure does not determine function , 2006, BMC Genomics.

[10]  Nuno Vasconcelos,et al.  Direct convex relaxations of sparse SVM , 2007, ICML '07.

[11]  Claus Bahlmann,et al.  Learning with Distance Substitution Kernels , 2004, DAGM-Symposium.

[12]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[13]  Heiko Wersing,et al.  Online figure-ground segmentation with adaptive metrics in generalized LVQ , 2009, Neurocomputing.

[14]  Ron D. Appel,et al.  ExPASy: the proteomics server for in-depth protein knowledge and analysis , 2003, Nucleic Acids Res..

[15]  T. Maier,et al.  Fast and reliable MALDI-TOF MS–based microorganism identification , 2006 .

[16]  Maya R. Gupta,et al.  Similarity-based Classification: Concepts and Algorithms , 2009, J. Mach. Learn. Res..

[17]  Atsushi Sato,et al.  Generalized Learning Vector Quantization , 1995, NIPS.

[18]  Horst Bunke,et al.  Edit distance-based kernel functions for structural pattern classification , 2006, Pattern Recognit..

[19]  Juan M. Corchado,et al.  Hybrid learning machines , 2009, Neurocomputing.

[20]  Trinad Chakraborty,et al.  Rapid Identification and Typing of Listeria Species by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry , 2008, Applied and Environmental Microbiology.

[21]  Klaus Obermayer,et al.  Soft Learning Vector Quantization , 2003, Neural Computation.

[22]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[23]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[24]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[25]  A. Kai Qin,et al.  A novel kernel prototype-based learning algorithm , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[26]  Emilio Corchado,et al.  Hybrid intelligent algorithms and applications , 2010, Inf. Sci..

[27]  Martin A. Riedmiller,et al.  Incremental GRLVQ: Learning relevant features for 3D object recognition , 2008, Neurocomputing.

[28]  Robert P. W. Duin,et al.  The Dissimilarity Representation for Pattern Recognition - Foundations and Applications , 2005, Series in Machine Perception and Artificial Intelligence.

[29]  Joachim M. Buhmann,et al.  On the information and representation of non-Euclidean pairwise data , 2006, Pattern Recognit..

[30]  Michael Biehl,et al.  Dynamics and Generalization Ability of LVQ Algorithms , 2007, J. Mach. Learn. Res..

[31]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[32]  Panu Somervuo,et al.  How to make large self-organizing maps for nonvectorial data , 2002, Neural Networks.