Resolutions of Convex Geometries

Convex geometries (Edelman and Jamison, 1985) are finite combinatorial structures dual to union-closed antimatroids or learning spaces.  We define an operation of resolution for convex geometries, which replaces each element of a base convex geometry by a fiber convex geometry.  Contrary to what happens for similar constructions–compounds of hypergraphs, as in Chein, Habib and Maurer (1981), and compositions of set systems, as in Möhring and Radermacher)–, resolutions of convex geometries always yield a convex geometry.   We investigate resolutions of special convex geometries: ordinal and affine.  A resolution of ordinal convex geometries is again ordinal, but a resolution of affine convex geometries may fail to be affine.  A notion of primitivity, which generalize the corresponding notion for posets, arises from resolutions: a convex geometry is primitive if it is not a resolution of smaller ones.  We obtain a characterization of affine convex geometries that are primitive, and compute the number of primitive convex geometries on at most four elements.  Several open problems are listed. 

[1]  Kira Adaricheva,et al.  Algebraic convex geometries revisited , 2014 .

[2]  Eric Ras,et al.  Learning Spaces , 2022, The SAGE Encyclopedia of Higher Education.

[3]  Alfio Giarlotta,et al.  New Trends in Preference, Utility, and Choice: From a Mono-approach to a Multi-approach , 2019, Multiple Criteria Decision Making.

[4]  F. W. Levi,et al.  On Helly's Theorem and the Axioms of Convexity , 1951 .

[5]  Mark R. Johnson,et al.  Locally complete path independent choice functions and their lattices , 2001, Math. Soc. Sci..

[6]  M. Aizerman,et al.  General theory of best variants choice: Some aspects , 1981 .

[7]  H. Mao Geometries, independence spaces and infinite antimatroids , 2017 .

[8]  William T. Trotter,et al.  Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures , 1993, Discret. Math..

[9]  H. Chernoff Rational Selection of Decision Functions , 1954 .

[10]  P. Samuelson A Note on the Pure Theory of Consumer's Behaviour , 1938 .

[11]  S. Foldes,et al.  On interval decomposition lattices , 2004 .

[12]  A. Giarlotta,et al.  The pseudo-transitivity of preference relations: Strict and weak (m,n)-Ferrers properties , 2014 .

[13]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[14]  Bernard Monjardet,et al.  A use for frequently rediscovering a concept , 1985 .

[15]  Paul D. Seymour,et al.  Unavoidable induced subgraphs in large graphs with no homogeneous sets , 2015, J. Comb. Theory, Ser. B.

[16]  Über die -Summe von gerichteten Graphen , 1971 .

[17]  Jean-Claude Falmagne,et al.  Knowledge spaces , 1998 .

[18]  Alfio Giarlotta,et al.  Choice resolutions , 2020, Social Choice and Welfare.

[19]  Pierre Ille,et al.  Ultracritical and hypercritical binary structures , 2011, Discret. Math..

[20]  Imed Zaguia,et al.  Prime Orders All of Whose Prime Suborders Are Selfdual , 2010, Order.

[21]  Jamas Enright,et al.  The Computational Complexity of Antimatroid Properties , 2001, Adv. Appl. Math..

[22]  Tero Harju,et al.  Ordered Sets , 2001 .

[23]  Nathalie Wahl Antimatroids of finite character , 2001 .

[24]  安藤 和敏,et al.  Extreme point axioms for closure spaces , 2002 .

[25]  J. B. Nation,et al.  Lattices of Algebraic Subsets and Implicational Classes , 2016 .

[26]  F. Radermacher,et al.  Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization , 1984 .

[27]  Ignacio Darío Viglizzo,et al.  Hasse diagrams of non-isomorphic posets with $n$ elements, $2\leq n \leq 7,$ and the number of posets with $10$ elements, without the aid of any computer program , 2017 .

[28]  Matthew D. Adler,et al.  Forthcoming in Social Choice and Welfare , 2014 .

[29]  Jimmy Leblet,et al.  Faithful extension on finite order classes , 2017, Australas. J Comb..

[30]  Gleb A. Koshevoy,et al.  Choice Functions and Extensive Operators , 2009, Order.

[31]  B. Monjardet The Consequences of Dilworth’s Work on Lattices with Unique Irreducible Decompositions , 1990 .

[32]  Bernard Monjardet,et al.  The duality between the anti-exchange closure operators and the path independent choice operators on a finite set , 2001, Math. Soc. Sci..

[33]  C. Plott PATH INDEPENDENCE, RATIONALITY, AND SOCIAL CHOICE , 1973 .

[34]  Paola Bonizzoni,et al.  An Algorithm for the Modular Decomposition of Hypergraphs , 1999, J. Algorithms.

[35]  Gerard Sierksma Exchange Properties of Convexity Spaces , 1984 .

[36]  Federico Echenique Counting combinatorial choice rules , 2007, Games Econ. Behav..

[37]  Michel Habib,et al.  A General Algorithmic Scheme for Modular Decompositions of Hypergraphs and Applications , 2019, IWOCA.

[38]  M. Farber,et al.  Convexity in graphs and hypergraphs , 1986 .

[39]  Udo Hoffmann,et al.  A universality theorem for allowable sequences with applications , 2018, ArXiv.

[40]  Oliver Pretzel,et al.  On the Dimension of Partially Ordered Sets , 1977, J. Comb. Theory, Ser. A.

[41]  Paul H. Edelman,et al.  The theory of convex geometries , 1985 .

[42]  J. B. Nation,et al.  Bases of Closure Systems , 2016 .

[43]  Kenji Kashiwabara,et al.  The affine representation theorem for abstract convex geometries , 2005, Comput. Geom..

[44]  M. Méndez Set Operads in Combinatorics and Computer Science , 2015 .

[45]  Johannes Marti,et al.  A Discrete Duality Between Nonmonotonic Consequence Relations and Convex Geometries , 2020, Order.

[46]  S. Foldes,et al.  Interval Decomposition Lattices are Balanced , 2013, 1306.5503.

[47]  G. Koshevoy Choice functions and abstract convex geometries , 1999 .

[48]  Bernard Monjardet Statement of precedence and a comment on IIA terminology , 2008, Games Econ. Behav..

[49]  Michel Habib,et al.  Partitive hypergraphs , 1981, Discret. Math..

[50]  Kotaro Suzumura,et al.  Choice, Preferences, and Procedures: A Rational Choice Theoretic Approach , 2016 .

[51]  R. Möhring Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions , 1985 .

[52]  Pierre Ille,et al.  Recognition of prime graphs from a prime subgraph , 2014, Discret. Math..

[53]  Hervé Moulin,et al.  Choice functions over a finite set: A summary , 1985 .

[54]  László Lovász,et al.  Examples and algorithmic properties of Greedoids , 1989 .

[55]  James B. Nation,et al.  A Class of Infinite Convex Geometries , 2016, Electron. J. Comb..