Another short proof of the Joni-Rota-Godsil integral formula for counting bipartite matchings
暂无分享,去创建一个
[1] L. Gordon,et al. The Gamma Function , 1994, Series and Products in the Development of Mathematics.
[2] Robert L. Patten. Combinatorics: Topics, Techniques, Algorithms , 1995 .
[3] J. A. Bondy,et al. Graph Theory , 2008, Graduate Texts in Mathematics.
[4] John Riordan,et al. Introduction to Combinatorial Analysis , 1959 .
[5] L. Lovász. Combinatorial problems and exercises , 1979 .
[6] Brendan D. McKay,et al. Asymptotic enumeration of Latin rectangles , 1990, J. Comb. Theory, Ser. B.
[7] Chris D. Godsil,et al. ALGEBRAIC COMBINATORICS , 2013 .
[8] Gian-Carlo Rota,et al. A Vector Space Analog of Permutations with Restricted Position , 1980, J. Comb. Theory, Ser. A.
[9] Richard M. Wilson,et al. A course in combinatorics , 1992 .
[10] S. Even,et al. Derangements and Laguerre polynomials , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.
[11] John Riordan,et al. Introduction to Combinatorial Analysis , 1958 .
[12] Chris D. Godsil,et al. Hermite polynomials and a duality relation for matchings polynomials , 1981, Comb..