Temperature dependence of the energy barrier in X/1X nm shape-anisotropy magnetic tunnel junctions

Shape-anisotropy magnetic tunnel junctions (MTJs) are attracting much attention as a high-performance nonvolatile spintronic device in the X/1X nm regime. In this study, we investigate an energy barrier relevant to the retention property in CoFeB/MgO-based shape-anisotropy MTJs with various diameters at high temperatures and compare it with that in conventional interfacial-anisotropy MTJs. We find that the scaling relationship between the energy barrier and the spontaneous magnetization in shape-anisotropy MTJs is well described by a model assuming the dominant contribution of shape anisotropy to the energy barrier. Also, the scaling exponent is much smaller than that for the interfacial-anisotropy MTJs, indicating that the properties of shape-anisotropy MTJs are less sensitive to the temperature. Using the experimentally determined scaling relationship, we discuss the design window of the MTJ dimensions to achieve data retention of 10 years at various temperatures. This study demonstrates that the shape-anisotropy MTJ holds promise of scaling beyond 20 nm for high-temperature applications.

[1]  T. Endoh,et al.  Micromagnetic simulation of the temperature dependence of the switching energy barrier using string method assuming sidewall damages in perpendicular magnetized magnetic tunnel junctions , 2020 .

[2]  Hideo Ohno,et al.  Scaling magnetic tunnel junction down to single-digit nanometers—Challenges and prospects , 2020 .

[3]  Harry Chuang,et al.  22nm STT-MRAM for Reflow and Automotive Uses with High Yield, Reliability, and Magnetic Immunity and with Performance and Shielding Options , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[4]  Takao Suzuki,et al.  Magnetic and structural properties of L10-Mn50Ga50-xAlx epitaxially grown thin films , 2019, AIP Advances.

[5]  H. Ohno,et al.  Temperature-dependent properties of CoFeB/MgO thin films: Experiments versus simulations , 2018, Physical Review B.

[6]  R. Tong,et al.  High-temperature thermal stability driven by magnetization dilution in CoFeB free layers for spin-transfer-torque magnetic random access memory , 2018, Scientific Reports.

[7]  Bernard Dieny,et al.  Spin transfer torque magnetic random-access memory: Towards sub-10 nm devices , 2018, 2018 International Conference on IC Design & Technology (ICICDT).

[8]  T. Endoh,et al.  Novel Method of Evaluating Accurate Thermal Stability for MTJs Using Thermal Disturbance and its Demonstration for Single-/Double-Interface p-MTJ , 2018, IEEE Transactions on Magnetics.

[9]  B. Diény,et al.  A highly thermally stable sub-20 nm magnetic random-access memory based on perpendicular shape anisotropy. , 2018, Nanoscale.

[10]  H. Ohno,et al.  Shape anisotropy revisited in single-digit nanometer magnetic tunnel junctions , 2017, Nature Communications.

[11]  H. Ohno,et al.  Magnetic-field-angle dependence of coercivity in CoFeB/MgO magnetic tunnel junctions with perpendicular easy axis , 2017 .

[12]  H. Ohno,et al.  Magnetic and Free-Layer Properties of MgO/(Co)FeB/MgO Structures: Dependence on CoFeB Composition , 2017, IEEE Magnetics Letters.

[13]  H. Ohno,et al.  Evaluation of energy barrier of CoFeB/MgO magnetic tunnel junctions with perpendicular easy axis using retention time measurement , 2017 .

[14]  Sze Ter Lim,et al.  Magnetization dynamics and its scattering mechanism in thin CoFeB films with interfacial anisotropy , 2017, Proceedings of the National Academy of Sciences.

[15]  H. Chen,et al.  Temperature Dependence of Critical Device Parameters in 1 Gb Perpendicular Magnetic Tunnel Junction Arrays for STT-MRAM , 2017, IEEE Transactions on Magnetics.

[16]  A. Sakuma,et al.  Effects of spin fluctuation on the magnetic anisotropy constant of itinerant electron magnets , 2016, 1605.05058.

[17]  M. Farle,et al.  Temperature dependence of perpendicular magnetic anisotropy in CoFeB thin films , 2016 .

[18]  Seung H. Kang,et al.  Systematic optimization of 1 Gbit perpendicular magnetic tunnel junction arrays for 28 nm embedded STT-MRAM and beyond , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[19]  Hideo Ohno,et al.  Temperature dependence of energy barrier in CoFeB-MgO magnetic tunnel junctions with perpendicular easy axis , 2015 .

[20]  Shoji Ikeda,et al.  Properties of magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure down to junction diameter of 11 nm , 2014 .

[21]  Kang L. Wang,et al.  Temperature dependence of the voltage-controlled perpendicular anisotropy in nanoscale MgO|CoFeB|Ta magnetic tunnel junctions , 2014 .

[22]  D. S. Holmes,et al.  Energy-Efficient Superconducting Computing—Power Budgets and Requirements , 2013, IEEE Transactions on Applied Superconductivity.

[23]  H. Ohno,et al.  Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure , 2012 .

[24]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[25]  M. Graef,et al.  The equivalent ellipsoid of a magnetized body , 2006 .

[26]  U. Nowak,et al.  Temperature-dependent magnetic properties of FePt: Effective spin Hamiltonian model , 2004, physics/0411020.

[27]  B. L. Gyorffy,et al.  Temperature dependent magnetic anisotropy in metallic magnets from an ab initio electronic structure theory: L1(0)-ordered FePt. , 2004, Physical review letters.

[28]  S. Zhang,et al.  Thermally assisted magnetization reversal in the presence of a spin-transfer torque , 2003, cond-mat/0302339.

[29]  T. Miyazaki,et al.  Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films , 2002 .

[30]  Michael F. Toney,et al.  Temperature dependent magnetic properties of highly chemically ordered Fe55−xNixPt45L10 films , 2002 .

[31]  M. Hoch,et al.  Magnetic properties of single crystal YCo 5 , 1974 .

[32]  H. Callen,et al.  The present status of the temperature dependence of magnetocrystalline anisotropy, and the l(l+1)2 power law , 1966 .