Tailoring and probing particle–polymer interactions in PMMA/silica nanocomposites

The unique physical and mechanical properties of polymer nanocomposites have been attributed to the interfacial interactions between the organic matrix and nanoscale particles. We demonstrate the potential to tune this interaction between poly(methyl methacrylate) (PMMA) and silica nanoparticles, as a function of either nanosilica surface chemistry or polymer reactivity. Functionalized nanosilica was mechanically deposited on the surface of PMMA films, and the system then heated above the polymer glass transition temperature. Rates and extents of nanoparticle sink-in were quantified by timelapse atomic force microscopy-based imaging, showing that the strength of particle–matrix interactions was predicted directly by polymer–particle interaction energies. Nanocomposite films created via this approach exhibited significantly enhanced elastic moduli and scratch resistance. This direct quantification of mechanical optimization viananoparticle–polymer interfacial chemistry enables new approaches to rapidly tune nanocomposite performance.

[1]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[2]  L. Schadler,et al.  Mechanical Behavior of Alumina/Poly(methyl methacrylate) Nanocomposites , 2004 .

[3]  S. Yariv,et al.  Physical Chemistry of Surfaces , 1979 .

[4]  John F. Kennedy,et al.  Polymer handbook (4th Edition) , 2001 .

[5]  S. A. Hutcheson,et al.  Nanosphere embedding into polymer surfaces: a viscoelastic contact mechanics analysis. , 2005, Physical review letters.

[6]  J. Keum,et al.  Deformation Behavior of Polyethylene/Silicate Nanocomposites As Studied by Real-Time Wide-Angle X-ray Scattering , 2002 .

[7]  Klaus Friedrich,et al.  Tensile performance improvement of low nanoparticles filled-polypropylene composites , 2002 .

[8]  Zhao-Xia Guo,et al.  The influence of silane treatment on nylon 6/nano-SiO2 in situ polymerization , 2002 .

[9]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[10]  P. S. Vincett,et al.  Subsurface particle monolayer and film formation in softenable substrates: Techniques and thermodynamic criteria , 1984 .

[11]  Salmon M. Kalkhoran,et al.  Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber-carbon black nanocomposites† , 2011 .

[12]  O. Park,et al.  The fabrication of syndiotactic polystyrene/organophilic clay nanocomposites and their properties , 2001 .

[13]  R. Composto,et al.  Direct observation of nanoparticle embedding into the surface of a polymer melt. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[14]  N. G. Semaltianos Spin-coated PMMA films , 2007, Microelectron. J..

[15]  Yangyang Sun,et al.  Study on mono-dispersed nano-size silica by surface modification for underfill applications. , 2005, Journal of colloid and interface science.

[16]  T. C. T. Ting,et al.  The Contact Stresses Between a Rigid Indenter and a Viscoelastic Half-Space , 1966 .

[17]  R. Mülhaupt,et al.  Poly(Methyl methacrylate)/Palladium Nanocomposites: Synthesis and Characterization of the Morphological, Thermomechanical, and Thermal Properties , 2003 .

[18]  D. Xiong,et al.  Study on Mechanical, Thermal and Electrical Characterizations of Nano-SiC/Epoxy Composites , 2009 .

[19]  S. Lustig,et al.  Polymer interphase structure near nanoscale inclusions: Comparison between random walk theory and experiment , 2010 .

[20]  F. Chang,et al.  Preparation and characterization of polystyrene–clay nanocomposites by free‐radical polymerization , 2002 .

[21]  P. S. Vincett,et al.  Formation and thermodynamic stability of a novel class of useful materials: Close-packed monolayers of submicron monodisperse spheres just below a polymer surface , 1982 .

[22]  En-Jui Lee,et al.  The Contact Problem for Viscoelastic Bodies , 1960 .

[23]  C. Tanford Macromolecules , 1994, Nature.

[24]  G. Nelson,et al.  PMMA/silica nanocomposite studies: Synthesis and properties , 2004 .

[25]  Robert C. Weast,et al.  Handbook of chemistry and physics : a readyreference book of chemical and physical data , 1972 .

[26]  Karl I. Jacob,et al.  Experimental trends in polymer nanocomposites—a review , 2005 .

[27]  P. C. Hiemenz,et al.  Principles of colloid and surface chemistry , 1977 .

[28]  L. Brinson,et al.  Functionalized graphene sheets for polymer nanocomposites. , 2008, Nature nanotechnology.

[29]  A. Márquez-Lucero,et al.  Thermal and Mechanical Analysis of Silver/Carbon Nanoparticle—PMMA Nanocomposites Obtained by Miniemulsion Polymerization , 2009 .

[30]  Soojin Park,et al.  Filler–elastomer interactions: influence of oxygen plasma treatment on surface and mechanical properties of carbon black/rubber composites , 2003 .

[31]  J. Forrest,et al.  Substrate and chain size dependence of near surface dynamics of glassy polymers. , 2008, Physical review letters.

[32]  Chih-Yuan Hsu,et al.  Poly(methylmethacrylate)-silica nanocomposites films from surface-functionalized silica nanoparticles , 2005 .

[33]  Journal of Polymer Science , 1946, Nature.

[34]  W. Hergeth,et al.  Polymerization in the presence of seeds. Part IV: Emulsion polymers containing inorganic filler particles , 1989 .

[35]  L. Schadler,et al.  Glass-transition temperature behavior of alumina/PMMA nanocomposites , 2004 .

[36]  J. Forrest,et al.  Direct imaging of nanoparticle embedding to probe viscoelasticity of polymer surfaces. , 2003, Physical review letters.

[37]  Journal of Applied Mechanics , 2022, Nature.

[38]  Franz-Josef Ulm,et al.  Grid indentation analysis of composite microstructure and mechanics: Principles and validation , 2006 .

[39]  R. Tannenbaum,et al.  Adsorption and Polymer Film Formation on Metal Nanoclusters , 2003 .

[40]  V. Litvinov,et al.  EPDM−Carbon Black Interactions and the Reinforcement Mechanisms, As Studied by Low-Resolution 1H NMR , 1999 .

[41]  J. S. Shelley,et al.  Reinforcement and environmental degradation of nylon-6/clay nanocomposites , 2001 .

[42]  Wen‐Chang Chen,et al.  Synthesis and characterization of organic–inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica , 2003 .

[43]  L. T. Zhuravlev Concentration of hydroxyl groups on the surface of amorphous silicas , 1987 .

[44]  J. J. Kirkland,et al.  Polymer molecular weight distributions by thermal field flow fractionation using Mark-Houwink constants , 1992 .

[45]  Park,et al.  Role of Chemically Modified Carbon Black Surfaces in Enhancing Interfacial Adhesion between Carbon Black and Rubber in a Composite System. , 2000, Journal of colloid and interface science.

[46]  J. Forrest,et al.  Measuring the Surface Dynamics of Glassy Polymers , 2008, Science.

[47]  T. Kashiwagi,et al.  Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite , 2003 .

[48]  Pht Peter Vollenberg,et al.  Particle size dependence of the Young's modulus of filled polymers: 1. Preliminary experiments , 1989 .

[49]  F. Fowkes,et al.  DETERMINATION OF INTERFACIAL TENSIONS, CONTACT ANGLES, AND DISPERSION FORCES IN SURFACES BY ASSUMING ADDITIVITY OF INTERMOLECULAR INTERACTIONS IN SURFACES , 1962 .