Dynamical Aspects of the Bidiagonal Singular Value Decomposition

In this paper we describe some striking stability properties of the singular value decomposition (SVD) of a bidiagonal matrix and of the Hamiltonian flow which interpolates the standard SVD algorithm at integer times.

[1]  James Demmel,et al.  Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..

[2]  Moody T. Chu,et al.  A differential equation approach to the singular value decomposition of bidiagonal matrices , 1986 .

[3]  J. Moser Finitely many mass points on the line under the influence of an exponential potential -- an integrable system , 1975 .

[4]  Jürgen Moser,et al.  Dynamical Systems, Theory and Applications , 1975 .

[5]  M. A. Semenov-Tyan-Shanskii What is a classical r-matrix? , 1983 .

[6]  Mark Adler,et al.  On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-devries type equations , 1978 .

[7]  J. Demmel,et al.  The bidiagonal singular value decomposition and Hamiltonian mechanics: LAPACK working note No. 11 , 1989 .

[8]  P. Deift,et al.  Ordinary differential equations and the symmetric eigenvalue problem , 1983 .

[9]  B. Kostant,et al.  The solution to a generalized Toda lattice and representation theory , 1979 .

[10]  W. Symes Hamiltonian group actions and integrable systems , 1980 .

[11]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  W. Symes The QR algorithm and scattering for the finite nonperiodic Toda Lattice , 1982 .

[14]  Carlos Tomei,et al.  The toda flow on a generic orbit is integrable , 1986 .

[15]  V. Klema LINPACK user's guide , 1980 .

[16]  J. Smillie,et al.  The dynamics of Rayleigh quotient iteration , 1989 .