In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities.

[1]  B. Karlan,et al.  A phase I/II trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer , 2002, Cancer Gene Therapy.

[2]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[3]  R. Solé,et al.  Data completeness—the Achilles heel of drug-target networks , 2008, Nature Biotechnology.

[4]  A. Hopkins Network pharmacology: the next paradigm in drug discovery. , 2008, Nature chemical biology.

[5]  A. Ashworth,et al.  Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. , 2009, The New England journal of medicine.

[6]  David J. Arenillas,et al.  Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis , 2010, Nucleic acids research.

[7]  Gary D Bader,et al.  International network of cancer genome projects , 2010, Nature.

[8]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[9]  H. Mackay,et al.  Phase II study of temsirolimus in women with recurrent or metastatic endometrial cancer: a trial of the NCIC Clinical Trials Group. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[10]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[11]  M. Stratton Exploring the Genomes of Cancer Cells: Progress and Promise , 2011, Science.

[12]  A. Gonzalez-Perez,et al.  Functional impact bias reveals cancer drivers , 2012, Nucleic acids research.

[13]  B. Al-Lazikani,et al.  Combinatorial drug therapy for cancer in the post-genomic era , 2012, Nature Biotechnology.

[14]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[15]  Bissan Al-Lazikani,et al.  canSAR: an integrated cancer public translational research and drug discovery resource , 2011, Nucleic Acids Res..

[16]  Sahdeo Prasad,et al.  Cancer drug discovery by repurposing: teaching new tricks to old dogs. , 2013, Trends in pharmacological sciences.

[17]  Gary D Bader,et al.  Computational approaches to identify functional genetic variants in cancer genomes , 2013, Nature Methods.

[18]  S. Elledge,et al.  Cumulative Haploinsufficiency and Triplosensitivity Drive Aneuploidy Patterns and Shape the Cancer Genome , 2013, Cell.

[19]  Michael P. Schroeder,et al.  IntOGen-mutations identifies cancer drivers across tumor types , 2013, Nature Methods.

[20]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[21]  Benjamin J. Raphael,et al.  Mutational landscape and significance across 12 major cancer types , 2013, Nature.

[22]  E. Lander,et al.  Lessons from the Cancer Genome , 2013, Cell.

[23]  Levi A Garraway,et al.  Genomics-driven oncology: framework for an emerging paradigm. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[24]  J. Maciejewski,et al.  Patterns of missplicing due to somatic U2AF1 mutations in myeloid neoplasms. , 2013, Blood.

[25]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[26]  David Tamborero,et al.  OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes , 2013, Bioinform..

[27]  Jo Wixon,et al.  Gene therapy clinical trials worldwide to 2012 – an update , 2013, The journal of gene medicine.

[28]  Krister Wennerberg,et al.  Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. , 2013, Cancer discovery.

[29]  Gary D Bader,et al.  Comprehensive identification of mutational cancer driver genes across 12 tumor types , 2013, Scientific Reports.

[30]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[31]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[32]  David Tamborero,et al.  OncodriveROLE classifies cancer driver genes in loss of function and activating mode of action , 2014, Bioinform..

[33]  D. Lane,et al.  Drugging the p53 pathway: understanding the route to clinical efficacy , 2014, Nature Reviews Drug Discovery.

[34]  Rodrigo Dienstmann,et al.  Standardized decision support in next generation sequencing reports of somatic cancer variants , 2014, Molecular oncology.

[35]  S. Gabriel,et al.  Discovery and saturation analysis of cancer genes across 21 tumor types , 2014, Nature.

[36]  Chandra Sekhar Pedamallu,et al.  A Pan-Cancer Analysis of Transcriptome Changes Associated with Somatic Mutations in U2AF1 Reveals Commonly Altered Splicing Events , 2014, PloS one.

[37]  M. Sanchez-Cespedes,et al.  The SWI/SNF genetic blockade: effects in cell differentiation, cancer and developmental diseases , 2014, Oncogene.

[38]  D. Lane,et al.  Drugging the p53 pathway: understanding the route to clinical efficacy , 2014, Nature Reviews Drug Discovery.

[39]  Dennis C. Friedrich,et al.  Whole-exome sequencing and clinical interpretation of formalin-fixed , paraffin-embedded tumor samples to guide precision cancer medicine , 2014 .

[40]  Alfonso Valencia,et al.  Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia , 2014, Genome research.

[41]  N. McGranahan,et al.  Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. , 2015, Cancer cell.

[42]  R. Verhaak,et al.  The landscape and therapeutic relevance of cancer-associated transcript fusions , 2014, Oncogene.